Show simple item record

dc.contributor.authorBalbuena Martínez, Maria Camino Teófila
dc.contributor.authorDalfó Simó, Cristina
dc.contributor.authorMartínez Barona, Berenice
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada
dc.date.accessioned2020-03-27T11:45:31Z
dc.date.available2020-03-27T11:45:31Z
dc.date.issued2019
dc.identifier.citationBalbuena, C.; Dalfo, C.; Martínez, B. Sufficient conditions for a digraph to admit a (1,=l)-identifying code. "Discussiones mathematicae. Graph theory", 2019.
dc.identifier.issn1234-3099
dc.identifier.urihttp://hdl.handle.net/2117/182027
dc.description.abstractA (1, = `)-identifying code in a digraph D is a subset C of vertices of D such that all distinct subsets of vertices of cardinality at most ` have distinct closed in-neighbourhoods within C. In this paper, we give some sufficient conditions for a digraph of minimum in-degree d - = 1 to admit a (1, = `)- identifying code for ` ¿ {d -, d- + 1}. As a corollary, we obtain the result by Laihonen that states that a graph of minimum degree d = 2 and girth at least 7 admits a (1, = d)-identifying code. Moreover, we prove that every 1-in-regular digraph has a (1, = 2)-identifying code if and only if the girth of the digraph is at least 5. We also characterize all the 2-in-regular digraphs admitting a (1, = `)-identifying code for ` ¿ {2, 3}.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
dc.subject.lcshGraph theory
dc.subject.othergraph
dc.subject.otherdigraph
dc.subject.otheridentifying code
dc.titleSufficient conditions for a digraph to admit a (1,=l)-identifying code
dc.typeArticle
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.identifier.doi10.7151/dmgt.2218
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.relation.publisherversionhttps://www.dmgt.uz.zgora.pl/publish/view_pdf.php?ID=4689
dc.rights.accessOpen Access
local.identifier.drac24240401
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/CONNECT
local.citation.authorBalbuena, C.; Dalfo, C.; Martínez, B.
local.citation.publicationNameDiscussiones mathematicae. Graph theory


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder