Show simple item record

dc.contributor.authorZupan, Nina
dc.contributor.authorKorelc, Joze
dc.date.accessioned2020-03-25T10:33:57Z
dc.date.available2020-03-25T10:33:57Z
dc.date.issued2017
dc.identifier.isbn978-84-946909-6-9
dc.identifier.urihttp://hdl.handle.net/2117/181269
dc.description.abstractWith growing capabilities of computers use of multi-scale methods for detailed analysis of response with respect to material and geometric nonlinearities is becoming more relevant. In this paper focus is on MIEL (mesh-in-element) multi-scale method and its implementation with AceGen and AceFEM based on analytical sensitivity analysis. Such implementation enables efficient multi-scale modelling, consistency and quadratic convergence also for two-level path following methods for the solution of path dependent problems.
dc.format.extent9 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshPlasticity -- Mathematical models
dc.subject.otherMulti-scale, MIEL, sensitivity analysis, path dependen
dc.titleEfficient multi-scale modelling of path dependent problems – complas 2017
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.subject.lemacPlasticitat -- Models matemàtics
dc.subject.lemacPlasticitat
dc.rights.accessOpen Access
local.citation.contributorCOMPLAS XIV
local.citation.publicationNameCOMPLAS XIV : proceedings of the XIV International Conference on Computational Plasticity : fundamentals and applications
local.citation.startingPage926
local.citation.endingPage934


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record