Mostra el registre d'ítem simple

dc.contributor.authorIbáñez Pinillo, Rubén
dc.contributor.authorChinesta Soria, Francisco
dc.contributor.authorAbisset-Chavanne, Emmanuelle
dc.contributor.authorAbenius, Erik
dc.contributor.authorHuerta, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-03-24T09:20:21Z
dc.date.issued2020-02-28
dc.identifier.citationIbáñez, R. [et al.]. Radars in transport applications. A: Pons Prats, J.; Diez Mejia, P.; Abenius, E.; Huerta Cerezuela, A. "Computation and big data for transport: digital innovations in surface and air transport systems". Berlín: Springer, 2020, p. 195-211.
dc.identifier.isbn978-3-030-37751-9
dc.identifier.urihttp://hdl.handle.net/2117/181021
dc.description.abstractIn the recent years, automotive car industry is evolving towards a new generation of autonomous vehicles, where decision making is not fully perform by the driver but it partially relies on the technology of the car itself. Indeed, a CPU inside the car will process all information coming from the sensors, distinguishing different scenarios appearing in the real life and ultimately allowing decision making. Since the CPU will be confronted with plenty of information, tools like machine learning or big- data analysis will be a useful ally to separate data from information. These existing machine learning techniques, such as kernel Principal Component Analysis (k-PCA), Locally Linear Embedding (LLE) among many other techniques, are useful to unveil the latent parameters defining a given scenario. Indeed, these algorithms have been already used to perform real-time classification of signals appearing throughout the road. Selecting the modeling of the electromagnetic response of the radar plays an important role to achieve real time constraints. Even though Helmholtz equation represents accurately the physics, the computational cost of such simulation is not affordable for real-time applications due to high radar operating frequencies, resulting into a very fine finite element mesh. On the other hand, far field approaches are not so accurate when the objects are very close due to plane wave assumption. In the first part of this work, the Geometrical Optics method is investigated in this work as a possible route to fulfill both real-time and accuracy constraints. The main hypothesis under such model is that waves are treated as straight lines constrained to optical reflection laws. Therefore, there is no need to mesh the interior of the domain. However, the accuracy of such approach is compromised when the size of the objects inside the domain are comparable to the wave lengths or in the vicinity of angular points. The second part is mainly focused on of the application of manifold learning and big data analysis into a data set of precomputed scenarios. Indeed, the identification of an unknown scenario from electromagnetic signals is purchased. Nevertheless, current research lines are devoted to give an answer to questions such as how many receptors do we need to identify unequivocally the scenario, where to locate the receptors, or which parts of the scenario have a negligible impact in the electromagnetic response.
dc.format.extent17 p.
dc.language.isoeng
dc.publisherSpringer
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Programació matemàtica
dc.subject.lcshProgramming (Mathematics)
dc.subject.otherADAS
dc.subject.otherData-driven
dc.subject.otherDimensionality reduction
dc.subject.otherBig-data
dc.titleRadars in transport applications
dc.typePart of book or chapter of book
dc.subject.lemacProgramació (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1007/978-3-030-37752-6_12
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::90 Operations research, mathematical programming::90C Mathematical programming
dc.relation.publisherversionhttps://link.springer.com/book/10.1007/978-3-030-37752-6
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac27266830
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorIbáñez, R.; Chinesta Soria, Francisco; Abisset-Chavanne, E.; Abenius, E.; Huerta, A.
local.citation.contributorPons Prats, Jordi; Diez Mejia, Pedro; Huerta Cerezuela, Antonio
local.citation.pubplaceBerlín
local.citation.publicationNameComputation and big data for transport: digital innovations in surface and air transport systems
local.citation.startingPage195
local.citation.endingPage211


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple