A fast branch-and-prune algorithm for the position analysis of spherical mechanisms

Cita com:
hdl:2117/180995
Document typeConference report
Defense date2019
PublisherSpringer
Rights accessOpen Access
Abstract
Different branch-and-prune schemes can be found in the literature for numerically solving the position analysis of spherical mechanisms. For the prune operation, they all rely on the propagation of motion intervals. They differ in the way the problem is algebraically formulated. This paper exploits the fact that spherical kinematic loop equations can be formulated as sets of 3 multi-affine polynomials. Multi-affinity has an important impact on how the propagation of motion intervals can be performed because a multi-affine polynomial is uniquely determined by its values at the vertices of a closed hyperbox defined in its domain.
Description
The final publication is available at link.springer.com
CitationShabani, A. [et al.]. A fast branch-and-prune algorithm for the position analysis of spherical mechanisms. A: World Congress on Mechanism and Machine Science. "IFToMM 2019: Advances in Mechanism and Machine Science: proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science". Berlín: Springer, 2019, p. 549-558.
ISBN978-3-030-20130-2
Publisher versionhttps://link.springer.com/chapter/10.1007%2F978-3-030-20131-9_55
Collections
- IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Ponències/Comunicacions de congressos [463]
- KRD - Cinemàtica i Disseny de Robots - Ponències/Comunicacions de congressos [21]
- Doctorat en Enginyeria Mecànica, Fluids i Aeronàutica - Ponències/Comunicacions de congressos [17]
- Doctorat en Automàtica, Robòtica i Visió - Ponències/Comunicacions de congressos [70]
Files | Description | Size | Format | View |
---|---|---|---|---|
2192-A-fast-bra ... f-spherical-mechanisms.pdf | 2,095Mb | View/Open |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder