dc.contributor.author | Borraz Martínez, Sergio |
dc.contributor.author | Boqué, Ricard |
dc.contributor.author | Simó Cruanyes, Joan |
dc.contributor.author | Mestre, Mariàngela |
dc.contributor.author | Gras Moreu, Anna Maria |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Tecnologia Agroalimentària i Biotecnologia |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Agroalimentària i Biotecnologia |
dc.date.accessioned | 2020-03-23T12:09:50Z |
dc.date.available | 2021-06-05T00:27:23Z |
dc.date.issued | 2019-11-01 |
dc.identifier.citation | Borraz, S. [et al.]. Development of a methodology to analyze leaves from Prunus dulcis varieties using near infrared spectroscopy. "Talanta", 1 Novembre 2019, vol. 204, p. 320-328. |
dc.identifier.issn | 0039-9140 |
dc.identifier.uri | http://hdl.handle.net/2117/180898 |
dc.description.abstract | Near-infrared spectroscopy (NIRS) can be a faster and more economical alternative to traditional methods for
screening varietal mixtures of nursery plants during the propagation process to ensure varietal purity and to
avoid errors in the dispatch batches. The global objective of this work was to develop and optimize a NIR spectral
collection method for construction of robust multivariate discrimination models. Three different varieties of
Prunus dulcis (Avijor, Guara, and Pentacebas) of agricultural interest were used for this study. Sources of variation
were investigated, including the position of the leaves on the trees, differences among trees of the same variety,
and differences at the varietal level. Three types of processed samples were investigated. Fresh leaves, dried
leaves, and dried leaves in powder form were included in each analysis. A study of spectral pre-treatment
methods was also performed, and multivariate methods were applied to analyze the influence of different factors
on classification. These included principal component analysis (PCA), partial least squares discriminant analysis
(PLS-DA), and ANOVA simultaneous component analysis (ASCA). The results indicated that variety was the most
important factor for classification. The spectral pre-treatment that provided the best results was a combination of
standard normal variate (SNV), Savitzky-Golay first derivative, and mean-centering methods. With regard to the
type of processed sample, the highest percentages of correct classifications were obtained with fresh and dried
powdered leaves at both the training set and test set validation levels. This study represents the first step towards
the consolidation of NIRS as a method to identify Prunus dulcis varieties. |
dc.format.extent | 9 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria agroalimentària |
dc.subject.lcsh | Foliar diagnosis |
dc.subject.lcsh | Almond |
dc.subject.other | Optimization |
dc.subject.other | Almond trees |
dc.subject.other | Leaf analysis |
dc.subject.other | Varietal purity |
dc.subject.other | NIR |
dc.subject.other | PLS-DA |
dc.title | Development of a methodology to analyze leaves from Prunus dulcis varieties using near infrared spectroscopy |
dc.type | Article |
dc.subject.lemac | Fulles |
dc.subject.lemac | Ametller |
dc.contributor.group | Universitat Politècnica de Catalunya. MVCO - Millora Vegetal de Caràcters Organolèptics |
dc.contributor.group | Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos |
dc.identifier.doi | 10.1016/j.talanta.2019.05.105 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0039914019305995 |
dc.rights.access | Open Access |
local.identifier.drac | 25312500 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO//AGL2015-70106-R/ES/TECNOLOGIAS ANALITICAS DE PROCESO (PAT) PARA EL CONTROL DE LA PRODUCCION VITIVINICOLA/ |
local.citation.author | Borraz, S.; Boqué, R.; Simo, J.; Mestre, M.; Gras, A. |
local.citation.publicationName | Talanta |
local.citation.volume | 204 |
local.citation.startingPage | 320 |
local.citation.endingPage | 328 |