Show simple item record

dc.contributor.authorParada Bustelo, Samuel
dc.contributor.authorBaiges Aznar, Joan
dc.contributor.authorCodina, Ramon
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Civil
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-03-20T10:28:22Z
dc.date.available2021-11-12T01:31:22Z
dc.date.issued2020-01
dc.identifier.citationParada, S.; Baiges, J.; Codina, R. A fractional step method for computational aeroacoustics using weak imposition of Dirichlet boundary conditions. "Computers and fluids", Gener 2020, vol. 197, p. 104374:1-104374:17.
dc.identifier.issn0045-7930
dc.identifier.otherhttps://www.researchgate.net/publication/332268894_A_FRACTIONAL_STEP_METHOD_FOR_COMPUTATIONAL_AEROACOUSTICS_USING_WEAK_IMPOSITION_OF_DIRICHLET_BOUNDARY_CONDITIONS
dc.identifier.urihttp://hdl.handle.net/2117/180697
dc.description.abstractIn this work we consider the approximation of the isentropic Navier–Stokes equations. The model we present is capable of taking into account acoustic and flow scales at once. After space and time discretizations have been chosen, it is very convenient from the computational point of view to design fractional step schemes in time so as to permit a segregated calculation of the problem unknowns. While these segregation schemes are well established for incompressible flows, much less is known in the case of isentropic flows. We discuss this issue in this article and, furthermore, we study the way to weakly impose Dirichlet boundary conditions via Nitsche’s method. In order to avoid spurious reflections of the acoustic waves, Nitsche’s method is combined with a non-reflecting boundary condition. Employing a purely algebraic approach to discuss the problem, some of the boundary contributions are treated explicitly and we explain how these are included in the different steps of the final algorithm. Numerical evidence shows that this explicit treatment does not have a significant impact on the convergence rate of the resulting time integration scheme. The equations of the formulation are solved using a subgrid scale technique based on a term-by-term stabilization.
dc.language.isoeng
dc.publisherElsevier
dc.rights© 2019. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Física::Física de fluids
dc.subject.lcshAeroacoustics
dc.subject.otherIsentropic flow
dc.subject.otherFractional step methods
dc.subject.otherWeak boundary conditions
dc.subject.otherTerm-by-term stabilization
dc.subject.otherAeroacoustics
dc.titleA fractional step method for computational aeroacoustics using weak imposition of Dirichlet boundary conditions
dc.typeArticle
dc.subject.lemacDinàmica de fluids -- Mètodes numèrics
dc.contributor.groupUniversitat Politècnica de Catalunya. ANiComp - Anàlisi numèrica i computació científica
dc.identifier.doi10.1016/j.compfluid.2019.104374
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0045793019303329
dc.rights.accessOpen Access
local.identifier.drac26916943
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098276-B-I00/ES/OPTIMIZACION TOPOLOGICA DE ESTRUCTURAS SUJETAS A INTERACCION FLUIDO-ESTRUCTURA/
local.citation.authorParada, S.; Baiges, J.; Codina, R.
local.citation.publicationNameComputers and fluids
local.citation.volume197
local.citation.startingPage104374:1
local.citation.endingPage104374:17


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record