Lane-changing and freeway capacity: a Bayesian inference stochastic model
View/Open
26538293.pdf (708,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2020-07
Rights accessRestricted access - publisher's policy
(embargoed until 2022-01-12)
Abstract
This article presents a new stochastic computational model for determining freeway capacity reduction as a result of lane-changing activity. The probability density function for the maximum flow that can be sustained on a freeway for a given lane-changing level is obtained. The results can be used to support freeway management strategies aiming to mitigate the negative consequences of lane-changing in freeway capacity. A pilot test using empirical data obtained from the B-23 freeway accessing the city of Barcelona proves the validity of the modeling approach.
Description
This is the accepted version of the following article: [Sala, M, Soriguera, F. Lane‐changing and freeway capacity: A Bayesian inference stochastic model. Comput Aided Civ Inf. 2020; 1– 15. https://doi.org/10.1111/mice.12529], which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12529
CitationSala, M.; Soriguera, F. Lane-changing and freeway capacity: a Bayesian inference stochastic model. "Computer-aided civil and infrastructure engineering", Juliol 2020, vol. 35, núm. 7, p. 719-733.
ISSN1093-9687
Publisher versionhttps://onlinelibrary.wiley.com/doi/full/10.1111/mice.12529
Files | Description | Size | Format | View |
---|---|---|---|---|
26538293.pdf![]() | 708,5Kb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder