Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.707 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • LIM/UPC - Laboratori d'Enginyeria Marítima
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • LIM/UPC - Laboratori d'Enginyeria Marítima
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Bayesian Network methodology for coastal hazard assessments on a regional scale: the BN-CRAF

Thumbnail
View/Open
27032068.pdf (4,260Mb)
Share:
 
 
10.1016/j.coastaleng.2019.103627
 
  View Usage Statistics
Cita com:
hdl:2117/180392

Show full item record
Sanuy Vázquez, MarcMés informacióMés informacióMés informació
Jiménez Quintana, José AntonioMés informacióMés informacióMés informació
Plant, Nathaniel G.
Document typeArticle
Defense date2020-04
Rights accessOpen Access
Attribution 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 3.0 Spain
ProjectRISC-KIT - Resilience-Increasing Strategies for Coasts (EC-FP7-603458)
RUTAS DE ADAPTACION AL CAMBIO CLIMATICO EN LA ZONA COSTERA MEDITERRANEA. SUPERANDO LOS LIMITES DE LA ADAPTABILIDAD (AEI-CTM2017-83655-C2-1-R)
Abstract
Hazard assessment is one of the key elements to be included in any coastal risk assessment framework. Characterizing storm-induced erosion and inundation involves the assessment of the coastal response under the forcing of a stochastic source (the storm), acting on a variable morphology (the beach) and inducing some damages. Hazard assessment under any present or future scenario will be affected by uncertainties either associated to the models used, the definition of climate conditions, and the characterization of the coastal morphology. In this context, Bayesian Networks (BN) can effectively address the problem as they allow accounting for these uncertainties while characterizing stochastically the system response and giving insight on the dependencies among involved variables. In this work, a BN-based methodology for storm-induced hazard assessment at regional scale is presented. The methodology is able to account for uncertainties associated with included models and forcing conditions through Monte-Carlo simulations. It produces distributions of erosion and inundation hazards under given scenarios allowing conditioned hazard assessments as a function of storm and morphological variables. Results are compared to hazards evaluated using an existing Coastal Risk Assessment Framework (CRAF), at two locations of the Catalan coast already identified as hotspots for storm-induced erosion and/or flooding.
CitationSanuy, M.; Jimenez, J.A.; Plant, N. A Bayesian Network methodology for coastal hazard assessments on a regional scale: the BN-CRAF. "Coastal engineering", Abril 2020, vol. 157, p. 103627:1-103627:15. 
URIhttp://hdl.handle.net/2117/180392
DOI10.1016/j.coastaleng.2019.103627
ISSN0378-3839
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S037838391930170X
Collections
  • LIM/UPC - Laboratori d'Enginyeria Marítima - Articles de revista [235]
  • Departament d'Enginyeria Civil i Ambiental - Articles de revista [2.682]
  • Doctorat en Enginyeria Civil - Articles de revista [130]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
27032068.pdf4,260MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina