Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.689 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CoDAlab - Control, Modelització, Identificació i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CoDAlab - Control, Modelització, Identificació i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Damage assessment in a stiffened composite panel using non-linear data-driven modelling and ultrasonic guided waves

Thumbnail
View/Open
th1b1.pdf (589,9Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/17972

Show full item record
Torres-Arredondo, Miguel Angel
Tibaduiza Burgos, Diego Alexander
Mujica Delgado, Luis EduardoMés informacióMés informacióMés informació
Rodellar Benedé, JoséMés informacióMés informacióMés informació
Fritzen, Claus-Peter
Document typeConference report
Defense date2013
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Structural components made of composite materials are being used more often in aerospace and aeronautic structures due to their well-known properties such as high mass specific stiffness and strength. However, their application also increases the analysis complexity of such structures. Structural health monitoring (SHM) systems for these structures aim to determine the status of the system in real time such that a longer safe life and lower operational costs can be guaranteed. On that account, this paper is concerned with the experimental validation of a structural health monitoring methodology where a damage detection and classification scheme based on an acousto-ultrasonic (AU) approach is applied to a composite panel incorporating stiffening elements using a piezoelectric active sensor network in conjunction with time-frequency multiresolution analysis and non-linear feature extraction. Therefore, structural dynamic responses from the simplified aircraft composite skin panel are collected and signal features are then extracted with a signal processing and data fusion methodology in terms of the wavelet transform technique and hierarchical non-linear principal component analysis. A critical comparison with linear feature extraction methods indicates that the proposed method outperforms the traditional linear methods for the purpose of damage classification. Additionally, results show that all the damages were detectable and classifiable, and the selected features proved capable of separating all damage conditions from the undamaged state.
CitationTorres-Arredondo, M. [et al.]. Damage assessment in a stiffened composite panel using non-linear data-driven modelling and ultrasonic guided waves. A: International Symposium on NDT in Aerospace. "Proceedings 4th International Symposium on NDT in Aerospace". Augsburg: 2013. 
URIhttp://hdl.handle.net/2117/17972
Collections
  • CoDAlab - Control, Modelització, Identificació i Aplicacions - Ponències/Comunicacions de congressos [183]
  • Departament de Matemàtiques - Ponències/Comunicacions de congressos [1.031]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
th1b1.pdf589,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina