Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.645 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel electricity price forecasting approach based on dimension reduction strategy and rough artificial neural networks

Thumbnail
View/Open
Final version.pdf (1,352Mb)
Share:
 
 
10.1109/TII.2019.2933009
 
  View Usage Statistics
Cita com:
hdl:2117/179325

Show full item record
Jahangir, Hamidreza
Tayarani, Hanif
Baghali, Sina
Ahmadian, Ali
Elkamel, Ali
Golkar, Masoud Aliakbar
Castilla Fernández, MiguelMés informacióMés informacióMés informació
Document typeArticle
Defense date2020-04-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
An accurate electricity price forecasting (EPF) plays a vital role in the deregulated energy markets and has a specific effect on optimal management of the power system. Considering all the potent factors in determining the electricity prices—some of which have stochastic nature—makes this a cumbersome task. In this article, first, Grey correlation analysis is applied to select the effective parameters in EPF problem and eliminate redundant factors based on low correlation grades. Then, a deep neural network with stacked denoising auto-encoders has been utilized to denoise data sets from different sources individually. After that, to detect the main features of the input data and putting aside the unnecessary features, dimension reduction process is implemented. Finally, the rough structure artificial neural network (ANN) has been executed to forecast the day-ahead electricity price. The proposed method is implemented on the data of Ontario, Canada, and the forecasted results are compared with different structures of ANN, support vector machine, long shortterm memory—benchmarking methods in this field—and forecasting data reported by independent electricity system operator (IESO) to evaluate the efficiency of the proposed approach. Furthermore, the results of this article indicate that the proposed method is efficient in terms of reducing error criterion and improves the forecasting error about 5–10 percent in comparison with IESO. This is a remarkable achievement in EPF field.
Description
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
CitationJahangir, H. [et al.]. A novel electricity price forecasting approach based on dimension reduction strategy and rough artificial neural networks. "IEEE transactions on industrial informatics", 1 Abril 2020, vol. 16, núm. 4, p. 2369-2381. 
URIhttp://hdl.handle.net/2117/179325
DOI10.1109/TII.2019.2933009
ISSN1551-3203
Publisher versionhttps://ieeexplore.ieee.org/document/8788555
Other identifiershttps://www.researchgate.net/publication/334980997_A_Novel_Electricity_Price_Forecasting_Approach_Based_on_Dimension_Reduction_Strategy_and_Rough_Artificial_Neural_Networks
Collections
  • Departament d'Enginyeria Electrònica - Articles de revista [1.603]
  • SEPIC - Sistemes Electrònics de Potència i de Control - Articles de revista [112]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Final version.pdf1,352MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina