On closed-form solutions to the position analysis of Baranov trusses

Cita com:
hdl:2117/17912
Document typeArticle
Defense date2012
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The exact position analysis of a planar mechanism reduces to compute the roots of its
characteristic polynomial. Obtaining this polynomial usually involves, as a first step, obtaining a system of equations derived from the independent kinematic loops of the mechanism. Although conceptually simple, the use of kinematic loops for deriving characteristic polynomials leads to complex variable eliminations and, in most cases, trigonometric substitutions. As an alternative, a method based on bilateration has recently been shown to permit obtaining the characteristic polynomials of the three-loop Baranov trusses without relying on variable eliminations or trigonometric substitutions. This paper shows how this technique can be applied to solve the position analysis of all catalogued Baranov
trusses. The characteristic polynomials of them all have been derived and, as a result, the maximum number of their assembly modes has been obtained. A comprehensive literature
survey is also included.
CitationRojas, N.E.; Thomas, F. On closed-form solutions to the position analysis of Baranov trusses. "Mechanism and machine theory", 2012, vol. 50, p. 179-196.
ISSN0094-114X
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
1299-On-Closed- ... sis-of-Baranov-Trusses.pdf | 523,5Kb | View/Open |