Show simple item record

dc.contributor.authorYu, Xiaoting
dc.contributor.authorZhang, C.
dc.contributor.authorLuo, Zhishan
dc.contributor.authorLiu, Junshan
dc.contributor.authorZuo, Yong
dc.contributor.authorJacas Biendicho, Jordi
dc.contributor.authorLlorca Piqué, Jordi
dc.contributor.authorArbiol, Jordi
dc.contributor.authorMorante Lleonart, Joan Ramon
dc.contributor.authorCabot, Andreu
dc.contributor.otherInstitut de Recerca en Energía de Catalunya
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Química
dc.date.accessioned2020-02-28T11:44:31Z
dc.date.issued2019-12-01
dc.identifier.citationYu, X. [et al.]. A low temperature solid state reaction to produce hollow MnxFe3-xO4 nanoparticles as anode for lithium-ion batteries. "Nano Energy", 1 Desembre 2019, vol. 66.
dc.identifier.issn2211-2855
dc.identifier.urihttp://hdl.handle.net/2117/178881
dc.description.abstractHollow MnxFe3-xO4 nanoparticles (NPs) with an average size of 15¿nm are produced from the solid state reaction of Fe3O4–Mn3O4 heterostructures. These heterostructures are synthesized through the seeded-growth of Mn3O4 crystal domains on the surface of hollow Fe3O4 NPs obtained by the nanoscale Kirkendall effect. Fe3O4–Mn3O4 heterostructures are subsequently annealed at 500¿°C, enough temperature to promote the interfusion of Fe and Mn ions, but without compromising the hollow geometry. MnxFe3-xO4 nanostructures are tested as anode in lithium-ion batteries (LIBs), delivering large lithium storage capacities and high-rate capabilities of 1054 mAh g-1 at 0.1¿A¿g-1 and 369 mAh g-1 at 5¿A¿g-1. Additionally, hollow MnxFe3-xO4 NPs display long cycling stability, with a capacity up to 887 mAh g-1 at 0.3¿A¿g-1 after 450 cycles. The excellent performance of hollow MnxFe3-xO4 NPs as anode for LIBs is associated with their crystal structure, composition, and the presence of carbonized ligands, which further promote electrical conductivity and buffer the volume changes during cycling. Additionally, the small particle size and hollow morphology improves the lithium kinetics, structural stability and cycling performance.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria química::Química física
dc.subject.lcshNanoparticles
dc.subject.lcshLithium ion batteries
dc.subject.otherFerrite
dc.subject.otherLithium-ion battery
dc.subject.otherKirkendall effect
dc.subject.otherHollow nanoparticle
dc.subject.otherIron oxide
dc.titleA low temperature solid state reaction to produce hollow MnxFe3-xO4 nanoparticles as anode for lithium-ion batteries
dc.typeArticle
dc.subject.lemacNanopartícules
dc.subject.lemacBateries d'ió liti
dc.contributor.groupUniversitat Politècnica de Catalunya. NEMEN - Nanoenginyeria de materials aplicats a l'energia
dc.identifier.doi10.1016/j.nanoen.2019.104199
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S2211285519309061
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac26738716
dc.description.versionPostprint (author's final draft)
dc.date.lift2021-12-01
local.citation.authorYu, X.; Zhang, C.; Luo, Z.; Liu, J.; Zuo, Y.; Jacas, J.; Llorca, J.; Arbiol, J.; Morante, J.; Cabot, A.
local.citation.publicationNameNano Energy
local.citation.volume66
local.citation.startingPage104199


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain