Show simple item record

dc.contributor.authorSpina, Andrea la
dc.contributor.authorGiacomini, Matteo
dc.contributor.authorHuerta, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat Erasmus Mundus en Simulació en Enginyeria i Desenvolupament de l'Emprenedoria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.identifier.citationLa Spina, A.; Giacomini, M.; Huerta, A. Hybrid coupling of CG and HDG discretizations based on Nitsche’s method. "Computational mechanics", Febrer 2020, vol. 65, núm. 2, p. 311-330.
dc.descriptionThis is a post-peer-review, pre-copyedit version of an article published in Computational mechanics. The final authenticated version is available online at:
dc.description.abstractA strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is presented for linear thermal and elastic problems. The hybrid CG-HDG coupling exploits the definition of the numerical flux and the trace of the solution on the mesh faces to impose the transmission conditions between the CG and HDG subdomains. The con- tinuity of the solution is imposed in the CG problem via Nitsche’s method, whereas the equilibrium of the flux at the interface is naturally enforced as a Neumann con- dition in the HDG global problem. The proposed strategy does not affect the core structure of CG and HDG discretizations. In fact, the resulting formulation leads to a minimally-intrusive coupling, suitable to be integrated in existing CG and HDG libraries. Numerical experiments in two and three dimensions show optimal global convergence of the stress and superconvergence of the displacement field, locking-free approximation, as well as the potential to treat structural problems of engineering interest featuring multiple materials with compressible and nearly incompressible behaviors.
dc.format.extent20 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshDifference equations--Numerical solutions
dc.subject.otherHybridizable discontinuous Galerkin
dc.subject.otherCoupling with nite element
dc.subject.otherNitsche's method
dc.titleHybrid coupling of CG and HDG discretizations based on Nitsche’s method
dc.subject.lemacEquacions diferencials--solucions numèriques
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::65 Numerical analysis::65L Ordinary differential equations
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74S Numerical methods
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/675919/EU/Empowered decision-making in simulation-based engineering: Advanced Model Reduction for real-time, inverse and optimization in industrial problems/AdMoRe
local.citation.authorLa Spina, A.; Giacomini, M.; Huerta, A.
local.citation.publicationNameComputational mechanics

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder