Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.689 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CoDAlab - Control, Modelització, Identificació i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • CoDAlab - Control, Modelització, Identificació i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Damage detection using robust fuzzy principal component analysis

Thumbnail
View/Open
fr1d1.pdf (973,7Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/17821

Show full item record
Gharibnezhad, Fahit
Mujica Delgado, Luis EduardoMés informacióMés informacióMés informació
Rodellar Benedé, JoséMés informacióMés informacióMés informació
Fritzen, Claus-Peter
Document typeConference report
Defense date2013
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this work Robust Fuzzy Principal Component Analysis (RFPCA) is used and compared with comparing with classical Principal Component Analysis (PCA) to detect and classify damages. It has been proved that the RFPCA method achieves better result mainly because it is more compressible than classical PCA and also carries more information, hence not only it can distinguish the healthy structure from the damaged structure much sharper than the traditional counterparts but also in some cases traditional PCA is incapable of discerning the pristine from damaged structure. This work involves experimental results using pipe-like structure powered by a piezoelectric actuators and sensors.
CitationGharibnezhad, F. [et al.]. Damage detection using robust fuzzy principal component analysis. A: European Workshop on Structural Health Monitoring. "Proceedings 6th European Workshop on Structural Health Monitoring". Dresden: 2013, p. 1-6. 
URIhttp://hdl.handle.net/2117/17821
Publisher versionhttp://www.ewshm2012.com/Portals/98/BB/fr1d1.pdf
Collections
  • CoDAlab - Control, Modelització, Identificació i Aplicacions - Ponències/Comunicacions de congressos [183]
  • Departament de Matemàtiques - Ponències/Comunicacions de congressos [1.031]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
fr1d1.pdf973,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina