Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.746 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Fast Maximum Distance to Average Vector (F-MDAV): an algorithm for k-Anonymous microaggregation in big data

Thumbnail
View/Open
Rodriguez_FastMDAV_EAAI_20200104.pdf (1,311Mb)
Share:
 
 
10.1016/j.engappai.2020.103531
 
  View Usage Statistics
Cita com:
hdl:2117/178139

Show full item record
Rodríguez Hoyos, Ana Fernanda
Estrada Jiménez, José Antonio
Rebollo-Monedero, David
Mezher, Ahmad MohamadMés informació
Parra Arnau, JavierMés informacióMés informacióMés informació
Forné Muñoz, JorgeMés informacióMés informacióMés informació
Document typeArticle
Defense date2020-02-10
PublisherElsevier
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectMICROAGREGACION ANONIMA EN ENCUESTAS DEMOGRAFICAS A GRAN ESCALA (MINECO-TIN2014-58259-JIN)
Abstract
The massive exploitation of tons of data is currently guiding critical decisions in domains such as economics or health. But serious privacy risks arise since personal data is commonly involved. k-Anonymous microaggregation is a well-known method that guarantees individuals’ privacy while preserving much of data utility. Unfortunately, methods like this are computationally expensive in big data settings, whereas the application domain of data might require an immediate response to make “life or death” decisions. Accordingly, this paper proposes five strategies to simplify the internal operations (such as distance calculations and element sorting) of the maximum distance to average vector method, the de facto microaggregation standard. For the sake of its usability in large-scale databases, they, e.g., reduce the number of operations necessary to compute distances from 3m to 2m, where m is the number of attributes of the data set. Also, the complexity of sorting operations gets reduced from O(n log n) to O(n) where n is the number of records. Through extensive experimentation over multiple data sets, we show that the new algorithm gets significantly faster. Interestingly, the speedup factor by each technique is not greater than 2, but the multiplicative effect of combining them all turns the algorithm four times faster than the original microaggregation mechanism. This remarkable speedup factor is achieved, literally, with no additional cost in terms of data utility, i.e., it does not incur greater information loss.
Description
© <2019> Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationRodríguez-Hoyos, A. [et al.]. The Fast Maximum Distance to Average Vector (F-MDAV): an algorithm for k-Anonymous microaggregation in big data. "Engineering applications of artificial intelligence", 10 Febrer 2020, vol. 90, núm. April 2020, p. 103531:1-103531:12. 
URIhttp://hdl.handle.net/2117/178139
DOI10.1016/j.engappai.2020.103531
ISSN0952-1976
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S095219762030035X
Collections
  • SISCOM - Smart Services for Information Systems and Communication Networks - Articles de revista [31]
  • Departament d'Enginyeria Telemàtica - Articles de revista [434]
  • Doctorat en Enginyeria Telemàtica - Articles de revista [88]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Rodriguez_FastMDAV_EAAI_20200104.pdf1,311MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina