Polar sea ice thickness and melt pond fraction measurements with multi-frequency bistatic radar polarimetric and interferometric reflectometry
View/Open
08900079.pdf (139,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/178102
Document typeConference lecture
Defense date2019
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Arctic and Antarctic sea ice covers are in a sharp contrast in terms of characteristics, distributions, and processes with a drastic decrease in the Arctic versus the opposite increase in the Antarctic in a changing climate. In quantifying polar sea ice differences to address the contrasted sea ice behaviors, two key parameters are sea ice thickness and melt pond fraction, which remain challenging to measure extensively in time and in space with a sustainable approach. Here, we present a new paradigm for such measurements using bistatic radar reflectometry, thanks to developments of low-cost receivers to acquire reflected signals from numerous existing transmitter systems operated at multiple frequencies to be replenished and sustained indefinitely into the future. For sea ice thickness measurement to determine ice volume, reflected signals likely come from the bottom ice-water interface avoiding large errors inherent in current altimetry techniques due to uncertainty in free-board height and snow cover. Regarding melt pond faction on sea ice to estimate albedo and insolation, the bistatic reflection can be dominated by melt pond water with permittivity that is one order of magnitude larger compared to that of snow or ice. These are examined by a combination of numerical Kirchhoff (KA) simulator and Numerical Maxwell Model of 3D simulations (NMM3D) to preserve phase and amplitude information and thereby account for both coherent and incoherent effects. Physical insights from the rigorous theory for bistatic radar reflectometry will be valuable to develop future satellite missions to resolve cryospheric science issues concerning the polar sea ice differences.
CitationNghiem, S. V. [et al.]. Polar sea ice thickness and melt pond fraction measurements with multi-frequency bistatic radar polarimetric and interferometric reflectometry. A: IEEE International Geoscience and Remote Sensing Symposium. "2019 IEEE International Geoscience & Remote Sensing Symposium: proceedings: July 28-August 2, 2019: Yokohama, Japan". Institute of Electrical and Electronics Engineers (IEEE), 2019, p. 4012-4015.
ISBN978-1-5386-9155-7
Files | Description | Size | Format | View |
---|---|---|---|---|
08900079.pdf![]() | 139,1Kb | Restricted access |