Show simple item record

dc.contributorRomeral Martínez, José Luis
dc.contributorDelgado Prieto, Miquel
dc.contributor.authorSala Cardoso, Enric
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2020-02-11T07:40:39Z
dc.date.available2020-02-11T07:40:39Z
dc.date.issued2019-12-16
dc.identifier.citationSala Cardoso, E. Advanced energy management strategies for HVAC systems in smart buildings. Tesi doctoral, UPC, Departament d'Enginyeria Electrònica, 2019.
dc.identifier.urihttp://hdl.handle.net/2117/177805
dc.description.abstractThe efficacy of the energy management systems at dealing with energy consumption in buildings has been a topic with a growing interest in recent years due to the ever-increasing global energy demand and the large percentage of energy being currently used by buildings. The scale of this sector has attracted research effort with the objective of uncovering potential improvement avenues and materializing them with the help of recent technological advances that could be exploited to lower the energetic footprint of buildings. Specifically, in the area of heating, ventilating and air conditioning installations, the availability of large amounts of historical data in building management software suites makes possible the study of how resource-efficient these systems really are when entrusted with ensuring occupant comfort. Actually, recent reports have shown that there is a gap between the ideal operating performance and the performance achieved in practice. Accordingly, this thesis considers the research of novel energy management strategies for heating, ventilating and air conditioning installations in buildings, aimed at narrowing the performance gap by employing data-driven methods to increase their context awareness, allowing management systems to steer the operation towards higher efficiency. This includes the advancement of modeling methodologies capable of extracting actionable knowledge from historical building behavior databases, through load forecasting and equipment operational performance estimation supporting the identification of a building’s context and energetic needs, and the development of a generalizable multi-objective optimization strategy aimed at meeting these needs while minimizing the consumption of energy. The experimental results obtained from the implementation of the developed methodologies show a significant potential for increasing energy efficiency of heating, ventilating and air conditioning systems while being sufficiently generic to support their usage in different installations having diverse equipment. In conclusion, a complete analysis and actuation framework was developed, implemented and validated by means of an experimental database acquired from a pilot plant during the research period of this thesis. The obtained results demonstrate the efficacy of the proposed standalone contributions, and as a whole represent a suitable solution for helping to increase the performance of heating, ventilating and air conditioning installations without affecting the comfort of their occupants.
dc.description.abstractL’eficàcia dels sistemes de gestió d’energia per afrontar el consum d’energia en edificis és un tema que ha rebut un interès en augment durant els darrers anys a causa de la creixent demanda global d’energia i del gran percentatge d’energia que n’utilitzen actualment els edificis. L’escala d’aquest sector ha atret l'atenció de nombrosa investigació amb l’objectiu de descobrir possibles vies de millora i materialitzar-les amb l’ajuda de recents avenços tecnològics que es podrien aprofitar per disminuir les necessitats energètiques dels edificis. Concretament, en l’àrea d’instal·lacions de calefacció, ventilació i climatització, la disponibilitat de grans bases de dades històriques als sistemes de gestió d’edificis fa possible l’estudi de com d'eficients són realment aquests sistemes quan s’encarreguen d'assegurar el confort dels seus ocupants. En realitat, informes recents indiquen que hi ha una diferència entre el rendiment operatiu ideal i el rendiment generalment assolit a la pràctica. En conseqüència, aquesta tesi considera la investigació de noves estratègies de gestió de l’energia per a instal·lacions de calefacció, ventilació i climatització en edificis, destinades a reduir la diferència de rendiment mitjançant l’ús de mètodes basats en dades per tal d'augmentar el seu coneixement contextual, permetent als sistemes de gestió dirigir l’operació cap a zones de treball amb un rendiment superior. Això inclou tant l’avanç de metodologies de modelat capaces d’extreure coneixement de bases de dades de comportaments històrics d’edificis a través de la previsió de càrregues de consum i l’estimació del rendiment operatiu dels equips que recolzin la identificació del context operatiu i de les necessitats energètiques d’un edifici, tant com del desenvolupament d’una estratègia d’optimització multi-objectiu generalitzable per tal de minimitzar el consum d’energia mentre es satisfan aquestes necessitats energètiques. Els resultats experimentals obtinguts a partir de la implementació de les metodologies desenvolupades mostren un potencial important per augmentar l'eficiència energètica dels sistemes de climatització, mentre que són prou genèrics com per permetre el seu ús en diferents instal·lacions i suportant equips diversos. En conclusió, durant aquesta tesi es va desenvolupar, implementar i validar un marc d’anàlisi i actuació complet mitjançant una base de dades experimental adquirida en una planta pilot durant el període d’investigació de la tesi. Els resultats obtinguts demostren l’eficàcia de les contribucions de manera individual i, en conjunt, representen una solució idònia per ajudar a augmentar el rendiment de les instal·lacions de climatització sense afectar el confort dels seus ocupants
dc.format.extent137 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.subject.otherChiller sequencing
dc.subject.otherDeep learning
dc.subject.otherEnergy efficiency
dc.subject.otherEnergy management
dc.subject.otherLoad forecasting
dc.subject.otherMachine learning
dc.subject.otherModel-predictive control
dc.subject.otherNeural networks
dc.subject.otherOptimal chiller loading
dc.subject.otherUnsupervised learning
dc.titleAdvanced energy management strategies for HVAC systems in smart buildings
dc.typeDoctoral thesis
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/668528


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record