dc.contributor.author | Balle Pigem, Borja de |
dc.contributor.author | Mohri, Mehryar |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics |
dc.date.accessioned | 2013-02-14T10:29:29Z |
dc.date.available | 2013-02-14T10:29:29Z |
dc.date.created | 2012 |
dc.date.issued | 2012 |
dc.identifier.citation | B. Balle; Mohri, M. Spectral learning of general weighted automata via constrained matrix completion. A: Annual Conference on Neural Information Processing Systems. "Advances in Neural Information Processing Systems 26: proceedings of the 2012 conference". Lake Tahoe, Nevada: 2012, p. 2168-2176. |
dc.identifier.uri | http://hdl.handle.net/2117/17754 |
dc.description | Student Paper Awards NIPS 2012 |
dc.description.abstract | Many tasks in text and speech processing and computational biology require estimating
functions mapping strings to real numbers. A broad class of such functions
can be defined by weighted automata. Spectral methods based on the singular
value decomposition of a Hankel matrix have been recently proposed for
learning a probability distribution represented by a weighted automaton from a
training sample drawn according to this same target distribution. In this paper, we
show how spectral methods can be extended to the problem of learning a general
weighted automaton from a sample generated by an arbitrary distribution. The
main obstruction to this approach is that, in general, some entries of the Hankel
matrix may be missing. We present a solution to this problem based on solving a
constrained matrix completion problem. Combining these two ingredients, matrix
completion and spectral method, a whole new family of algorithms for learning
general weighted automata is obtained. We present generalization bounds for a
particular algorithm in this family. The proofs rely on a joint stability analysis of
matrix completion and spectral learning. |
dc.format.extent | 9 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Sistemes d'informació |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències |
dc.subject.lcsh | Weighted automata |
dc.title | Spectral learning of general weighted automata via constrained matrix completion |
dc.type | Conference lecture |
dc.subject.lemac | Transductors |
dc.contributor.group | Universitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge |
dc.description.peerreviewed | Peer Reviewed |
dc.description.awardwinning | Award-winning |
dc.relation.publisherversion | http://books.nips.cc/papers/files/nips25/bibhtml/NIPS2012_1075.html |
dc.rights.access | Open Access |
local.identifier.drac | 11424741 |
dc.description.version | Postprint (published version) |
local.citation.author | B. Balle; Mohri, M. |
local.citation.contributor | Annual Conference on Neural Information Processing Systems |
local.citation.pubplace | Lake Tahoe, Nevada |
local.citation.publicationName | Advances in Neural Information Processing Systems 26: proceedings of the 2012 conference |
local.citation.startingPage | 2168 |
local.citation.endingPage | 2176 |