Show simple item record

dc.contributor.authorBalle Pigem, Borja de
dc.contributor.authorMohri, Mehryar
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
dc.date.accessioned2013-02-14T10:29:29Z
dc.date.available2013-02-14T10:29:29Z
dc.date.created2012
dc.date.issued2012
dc.identifier.citationB. Balle; Mohri, M. Spectral learning of general weighted automata via constrained matrix completion. A: Annual Conference on Neural Information Processing Systems. "Advances in Neural Information Processing Systems 26: proceedings of the 2012 conference". Lake Tahoe, Nevada: 2012, p. 2168-2176.
dc.identifier.urihttp://hdl.handle.net/2117/17754
dc.descriptionStudent Paper Awards NIPS 2012
dc.description.abstractMany tasks in text and speech processing and computational biology require estimating functions mapping strings to real numbers. A broad class of such functions can be defined by weighted automata. Spectral methods based on the singular value decomposition of a Hankel matrix have been recently proposed for learning a probability distribution represented by a weighted automaton from a training sample drawn according to this same target distribution. In this paper, we show how spectral methods can be extended to the problem of learning a general weighted automaton from a sample generated by an arbitrary distribution. The main obstruction to this approach is that, in general, some entries of the Hankel matrix may be missing. We present a solution to this problem based on solving a constrained matrix completion problem. Combining these two ingredients, matrix completion and spectral method, a whole new family of algorithms for learning general weighted automata is obtained. We present generalization bounds for a particular algorithm in this family. The proofs rely on a joint stability analysis of matrix completion and spectral learning.
dc.format.extent9 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Sistemes d'informació
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshWeighted automata
dc.titleSpectral learning of general weighted automata via constrained matrix completion
dc.typeConference lecture
dc.subject.lemacTransductors
dc.contributor.groupUniversitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
dc.description.peerreviewedPeer Reviewed
dc.description.awardwinningAward-winning
dc.relation.publisherversionhttp://books.nips.cc/papers/files/nips25/bibhtml/NIPS2012_1075.html
dc.rights.accessOpen Access
local.identifier.drac11424741
dc.description.versionPostprint (published version)
local.citation.authorB. Balle; Mohri, M.
local.citation.contributorAnnual Conference on Neural Information Processing Systems
local.citation.pubplaceLake Tahoe, Nevada
local.citation.publicationNameAdvances in Neural Information Processing Systems 26: proceedings of the 2012 conference
local.citation.startingPage2168
local.citation.endingPage2176


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record