Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.848 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectral learning of general weighted automata via constrained matrix completionAward-winning

Thumbnail
View/Open
NIPS2012_1075.pdf (279,8Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/17754

Show full item record
Balle Pigem, Borja de
Mohri, Mehryar
Document typeConference lecture
Defense date2012
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Many tasks in text and speech processing and computational biology require estimating functions mapping strings to real numbers. A broad class of such functions can be defined by weighted automata. Spectral methods based on the singular value decomposition of a Hankel matrix have been recently proposed for learning a probability distribution represented by a weighted automaton from a training sample drawn according to this same target distribution. In this paper, we show how spectral methods can be extended to the problem of learning a general weighted automaton from a sample generated by an arbitrary distribution. The main obstruction to this approach is that, in general, some entries of the Hankel matrix may be missing. We present a solution to this problem based on solving a constrained matrix completion problem. Combining these two ingredients, matrix completion and spectral method, a whole new family of algorithms for learning general weighted automata is obtained. We present generalization bounds for a particular algorithm in this family. The proofs rely on a joint stability analysis of matrix completion and spectral learning.
Description
Student Paper Awards NIPS 2012
CitationB. Balle; Mohri, M. Spectral learning of general weighted automata via constrained matrix completion. A: Annual Conference on Neural Information Processing Systems. "Advances in Neural Information Processing Systems 26: proceedings of the 2012 conference". Lake Tahoe, Nevada: 2012, p. 2168-2176. 
Award-winningAward-winning
URIhttp://hdl.handle.net/2117/17754
Publisher versionhttp://books.nips.cc/papers/files/nips25/bibhtml/NIPS2012_1075.html
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.219]
  • LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge - Ponències/Comunicacions de congressos [120]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
NIPS2012_1075.pdf279,8KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina