Show simple item record

dc.contributor.authorYera, Rolando
dc.contributor.authorRossi, N.
dc.contributor.authorMéndez, Carlos Alberto
dc.contributor.authorHuespe, Alfredo Edmundo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-02-11T16:25:09Z
dc.date.issued2020-03
dc.identifier.citationYera, R. [et al.]. Topology design of 2D and 3D elastic material microarchitectures with crystal symmetries displaying isotropic properties close to their theoretical limits. "Applied Materials Today", Març 2020, vol. 18, p. 100456:1-100456:17.
dc.identifier.issn2352-9407
dc.identifier.otherhttps://www.researchgate.net/publication/335703815_Topology_design_of_2D_and_3D_elastic_material_microarchitectures_with_crystal_symmetries_displaying_isotropic_properties_close_to_their_theoretical_limits
dc.identifier.urihttp://hdl.handle.net/2117/177485
dc.description.abstractThis paper evaluates the effect that different imposed crystal symmetries have on the topology design of two-phase isotropic elastic composites ruled by the target of attaining extreme theoretical properties. Extreme properties are defined by the Cherkaev–Gibiansky bounds, for 2D cases, or the Hashin–Shtrikman bounds, for 3D cases. The topology design methodology used in this study is an inverse homogenization technique which is mathematically formulated as a topology optimization problem. The crystal symmetry is imposed on the material configuration within a predefined design domain, which is taken as the primitive cell of the underlying Bravais lattice of the crystal system studied in each case. The influence of imposing crystal symmetries to the microstructure topologies is evaluated by testing five plane groups of the hexagonal crystal system for 2D problems and four space groups of the cubic crystal systems for 3D problems. A discussion about the adequacy of the tested plane or space groups to attain elastic properties close to the theoretical bounds is presented. The extracted conclusions could be meaningful for more general classes of topology design problems in the thermal, phononic or photonic fields.
dc.language.isoeng
dc.publisherElsevier
dc.rights© 2019. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/"
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshStructural optimization
dc.subject.otherThree and two-dimensional (3D and 2D) microarchitecture designs
dc.subject.otherExtreme isotropic elastic properties
dc.subject.otherCrystal symmetries
dc.subject.otherTopology optimization
dc.subject.otherInverse homogenization technique
dc.titleTopology design of 2D and 3D elastic material microarchitectures with crystal symmetries displaying isotropic properties close to their theoretical limits
dc.typeArticle
dc.subject.lemacOptimització d'estructures
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.identifier.doi10.1016/j.apmt.2019.100456
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352940719305748
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac26427786
dc.description.versionPostprint (published version)
dc.date.lift2021-11-15
local.citation.authorYera, R.; Rossi, N.; MÉNDEZ, C.; Huespe, A.
local.citation.publicationNameApplied Materials Today
local.citation.volume18
local.citation.startingPage100456:1
local.citation.endingPage100456:17


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Generic