Convolutional neural network training with dynamic epoch ordering
View/Open
ccia201914.pdf (565,8Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference lecture
Defense date2019
PublisherIOS Press
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The paper presented exposes a novel approach to feed data to a Convolutional Neural Network (CNN) while training. Normally, neural networks are fed with shuffled data without any control of what type of examples contains a minibatch. For situations where data are abundant and there does not exist an unbalancing between classes, shuffling the training data is enough to ensure a balanced mini-batch. On the contrary, most real-world problems end up with databases where some classes are predominant vs others, ill-conditioning the training network to learn those classes forgetting the others. For those conditioned cases, most common methods simply discard a certain number of samples until the data is balanced, but this paper proposes an ordered method of feeding data while preserving randomness in the mini-batch composition and using all available samples. This method has proven to solve the problem with unbalanced data-sets while competing with other methods. Moreover, the paper will
focus its attention to a well know CNN network structure, named Deep Residual Networks.
CitationPlana, F. [et al.]. Convolutional neural network training with dynamic epoch ordering. A: International Conference of the Catalan Association for Artificial Intelligence. "Artificial Intelligence Research and Development vol. 319". IOS Press, 2019, p. 105-114.
ISBN978-1-64368-014-9
Publisher versionhttp://ebooks.iospress.nl/volumearticle/52826
Collections
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.447]
- Computer Sciences - Ponències/Comunicacions de congressos [509]
- GREC - Grup de Recerca en Enginyeria del Coneixement - Ponències/Comunicacions de congressos [114]
- Doctorat en Automàtica, Robòtica i Visió - Ponències/Comunicacions de congressos [138]
Files | Description | Size | Format | View |
---|---|---|---|---|
ccia201914.pdf![]() | 565,8Kb | Restricted access |