Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.619 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Euler flows and singular geometric structures

Thumbnail
View/Open
btischlerLastChangeReferences.pdf (391,4Kb)
Share:
 
 
10.1098/rsta.2019.0034
 
  View Usage Statistics
Cita com:
hdl:2117/176816

Show full item record
Miranda Galcerán, EvaMés informacióMés informacióMés informació
Cardona Aguilar, RobertMés informacióMés informació
Peralta-Salas, Daniel
Document typeArticle
Defense date2019
PublisherRoyal Society
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Tichler proved in [24] that a manifold admitting a smooth non vanishing and closed one-form bers over a circle. More generally a manifold admitting k independent closed one-forms bers over a torus Tk. In this article we explain a version of this construction for manifolds with boundary using the techniques of b-calculus [18, 13]. We explore new applications of this idea to Fluid Dynamics and more concretely in the study of stationary solutions of the Euler equations. In the study of Euler ows on manifolds, two dichotomic situations appear. For the rst one, in which the Bernoulli function is not constant, we provide a new proof of Arnold's structure theorem and describe b-symplectic structures on some of the singular sets of the Bernoulli function. When the Bernoulli function is constant, a correspondence between contact structures with singularities [19] and what we call b-Beltrami elds is established, thus mimicking the classical correspondence between Beltrami elds and contact structures (see for instance [8]). These results provide a new technique to analyze the geometry of steady uid ows on non-compact manifolds with cylindrical ends.
CitationMiranda, E.; Cardona, R.; Peralta-Salas, D. Euler flows and singular geometric structures. "Philosophical transactions of the Royal Society A. Mathematical physical and engineering sciences", 2019, vol. 377, núm. 2158, p. 20190034-1-20190034-18. 
URIhttp://hdl.handle.net/2117/176816
DOI10.1098/rsta.2019.0034
ISSN1364-503X
Publisher versionhttps://royalsocietypublishing.org/doi/10.1098/rsta.2019.0034#
Collections
  • GEOMVAP - Geometria de Varietats i Aplicacions - Articles de revista [162]
  • Doctorat en Matemàtica Aplicada - Articles de revista [74]
  • Departament de Matemàtiques - Articles de revista [3.000]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
btischlerLastChangeReferences.pdf391,4KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina