dc.contributor.author | Barceló Bugeda, Jaime |
dc.contributor.author | Montero Mercadé, Lídia |
dc.contributor.author | Bullejos, Manuel |
dc.contributor.author | Serch, Oriol |
dc.contributor.author | Carmona Bautista, Carlos |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa |
dc.date.accessioned | 2013-02-11T18:40:49Z |
dc.date.available | 2013-02-11T18:40:49Z |
dc.date.created | 2012 |
dc.date.issued | 2012 |
dc.identifier.citation | Barcelo, J. [et al.]. A Kalman filter approach for the estimation of time dependent OD matrices exploiting bluetooth traffic data collection. A: Transportation Research Board Annual Meeting. "TRB 91st Annual Meeting Compendium of Papers DVD". WASHINGTON: 2012, p. 1-16. |
dc.identifier.uri | http://hdl.handle.net/2117/17642 |
dc.description.abstract | Time-Dependent Origin-Destination (OD) matrices are a key input to Dynamic Traffic Models, microscopic and mesoscopic traffic simulators are relevant examples of such models, traditionally used to assist in the design and evaluation of Traffic Management and Information Systems (ATMS/ATIS). Dynamic traffic models can also be used to support real-time traffic management decisions. The typical approaches to the time-dependent OD estimation have been based either on ad hoc heuristics using mathematical programming approaches, or on Kalman-Filtering. The advent of the new Information and Communication Technologies (ICT), makes available new types of traffic data of higher quality and accuracy allowing for new modeling hypothesis leading to more computationally efficient algorithms. Ad hoc procedures based on Kalman Filtering, explicitly exploiting traffic data available from Bluetooth sensors, have been designed and implemented successfully and the numerical results of the computational experiments are discussed for freeway and network test sites. |
dc.format.extent | 16 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Simulació |
dc.subject.lcsh | Simulation methods |
dc.subject.lcsh | Kalman filtering |
dc.subject.other | Bluetooth technology |
dc.subject.other | Data collection |
dc.subject.other | Dynamic traffic assignment |
dc.subject.other | Kalman filtering |
dc.subject.other | Origin and destination |
dc.subject.other | Real time information |
dc.subject.other | Time dependence |
dc.subject.other | Traffic data |
dc.subject.other | Traffic models |
dc.title | A Kalman filter approach for the estimation of time dependent OD matrices exploiting bluetooth traffic data collection |
dc.type | Conference report |
dc.subject.lemac | Kalman, Filtratge de |
dc.subject.lemac | Simulació, Mètodes de |
dc.contributor.group | Universitat Politècnica de Catalunya. PROMALS - Grup de Recerca en Programació Matemática, Logística i Simulació |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming |
dc.relation.publisherversion | http://amonline.trb.org/pap@PaperNo=12-3843 |
dc.relation.publisherversion | http://trid.trb.org/view.aspx?id=1130522 |
dc.rights.access | Open Access |
local.identifier.drac | 9455431 |
dc.description.version | Postprint (published version) |
local.citation.author | Barcelo, J.; Montero, L.; Bullejos, M.; Serch, O.; Carmona, C. |
local.citation.contributor | Transportation Research Board Annual Meeting |
local.citation.pubplace | WASHINGTON |
local.citation.publicationName | TRB 91st Annual Meeting Compendium of Papers DVD |
local.citation.startingPage | 1 |
local.citation.endingPage | 16 |