Show simple item record

dc.contributor.authorÁbrego, Bernardo M.
dc.contributor.authorFernández Merchant, Silvia
dc.contributor.authorKano, Mikio
dc.contributor.authorOrden, David
dc.contributor.authorPérez Lantero, Pablo
dc.contributor.authorSeara Ojea, Carlos
dc.contributor.authorTejel Altarriba, Francisco Javier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2020-01-30T12:29:41Z
dc.date.available2020-01-30T12:29:41Z
dc.date.issued2019-01-31
dc.identifier.citationÁbrego, B. [et al.]. K-1,K-3-covering red and blue points in the plane. "Discrete mathematics and theoretical computer science", 31 Gener 2019, vol. 21, núm. 3, p. 1-29.
dc.identifier.issn1462-7264
dc.identifier.otherhttps://arxiv.org/pdf/1707.06856.pdf
dc.identifier.urihttp://hdl.handle.net/2117/176195
dc.description.abstractWe say that a finite set of red and blue points in the plane in general position can be K1,3-covered if the set can be partitioned into subsets of size 4, with 3 points of one color and 1 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set R of r red points and a set B of b blue points in the plane in general position, how many points of R ¿ B can be K1,3-covered? and we prove the following results: (1) If r = 3g + h and b = 3h + g, for some non-negative integers g and h, then there are point sets R ¿ B, like {1, 3}-equitable sets (i.e., r = 3b or b = 3r) and linearly separable sets, that can be K1,3-covered. (2) If r = 3g + h, b = 3h + g and the points in R ¿ B are in convex position, then at least r + b - 4 points can be K1,3-covered, and this bound is tight. (3) There are arbitrarily large point sets R ¿ B in general position, with r = b + 1, such that at most r + b - 5 points can be K1,3-covered. (4) If b = r = 3b, then at least 8 9 (r + b - 8) points of R ¿ B can be K1,3-covered. For r > 3b, there are too many red points and at least r - 3b of them will remain uncovered in any K1,3-covering.
dc.format.extent29 p.
dc.language.isoeng
dc.publisherChapman & Hall/CRC
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshComputer science--Mathematics
dc.subject.otherNon-crossing geometric graph
dc.subject.otherstar
dc.subject.othercovering
dc.subject.otherred and blue points
dc.titleK-1,K-3-covering red and blue points in the plane
dc.typeArticle
dc.subject.lemacInformàtica--Matemàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. CGA - Computational Geometry and Applications
dc.identifier.doi10.23638/DMTCS-21-3-6
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science
dc.relation.publisherversionhttps://dmtcs.episciences.org/5126
dc.rights.accessOpen Access
local.identifier.drac25821550
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2015-63791-R
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/CONNECT
local.citation.authorÁbrego, B.; Fernández, S.; Kano, M.; Orden, D.; Perez-Lantero, P.; Seara, C.; Tejel, F.
local.citation.publicationNameDiscrete mathematics and theoretical computer science
local.citation.volume21
local.citation.number3
local.citation.startingPage1
local.citation.endingPage29


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder