UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
CM cycles on Kuga-Sato varieties over Shimura curves and Selmer groups

View/Open
Cita com:
hdl:2117/175972
Document typeArticle
Defense date2018
Rights accessOpen Access
This work is protected by the corresponding intellectual and industrial property rights.
Except where otherwise noted, its contents are licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Given a modular form f of even weight larger than two and an imaginary quadratic field K
satisfying a relaxed Heegner hypothesis, we construct a collection of CM cycles on a Kuga–Sato
variety over a suitable Shimura curve which gives rise to a system of Galois cohomology classes
attached to f enjoying the compatibility properties of an Euler system. Then we use Kolyvagin’s
method [21], as adapted by Nekova´¿r [28] to higher weight modular forms, to bound the size of the relevant Selmer group associated to f and K and prove the finiteness of the (primary part) of the Shafarevich–Tate group, provided that a suitable cohomology class does not vanish.
CitationElias, Y.; de Vera-Piquero, C. CM cycles on Kuga-Sato varieties over Shimura curves and Selmer groups. "Forum mathematicum", 2018, vol. 30, núm. 2, p. 321-346.
ISSN0933-7741
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
Elias-dVP_CMCycles.pdf | 287,7Kb | View/Open |