Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.567 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of amyloid pathology in cognitively unimpaired individuals using voxel-wise analysis of longitudinal structural brain MRI

Thumbnail
View/Open
AZRT-S-19-00083.pdf (3,036Mb)
Share:
 
 
10.1186/s13195-019-0526-8
 
  View Usage Statistics
Cita com:
hdl:2117/175733

Show full item record
Petrone, Paula
Casamitjana Díaz, AdriàMés informacióMés informacióMés informació
Falcón, Carlos
Artigues, Miquel
Operto, Grégory
Cacciaglia, Raffaele
Molinuevo, José Luis
Vilaplana Besler, VerónicaMés informacióMés informacióMés informació
Gispert, Juan Domingo
Document typeArticle
Defense date2019-08-17
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Project
Abstract
Background Magnetic resonance imaging (MRI) has unveiled specific alterations at different stages of Alzheimer’s disease (AD) pathophysiologic continuum constituting what has been established as “AD signature”. To what extent MRI can detect amyloid-related cerebral changes from structural MRI in cognitively unimpaired individuals is still an area open for exploration. Method Longitudinal 3D-T1 MRI scans were acquired from a subset of the ADNI cohort comprising 403 subjects: 79 controls (Ctrls), 50 preclinical AD (PreAD), and 274 MCI and dementia due to AD (MCI/AD). Amyloid CSF was used as gold-standard measure with established cutoffs (<¿192¿pg/mL) to establish diagnostic categories. Cognitively unimpaired individuals were defined as Ctrls if were amyloid negative and PreAD otherwise. The MCI/AD group was amyloid positive. Only subjects with the same diagnostic category at baseline and follow-up visits were considered for the study. Longitudinal morphometric analysis was performed using SPM12 to calculate Jacobian determinant maps. Statistical analysis was carried out on these Jacobian maps to identify structural changes that were significantly different between diagnostic categories. A machine learning classifier was applied on Jacobian determinant maps to predict the presence of abnormal amyloid levels in cognitively unimpaired individuals. The performance of this classifier was evaluated using receiver operating characteristic curve analysis and as a function of the follow-up time between MRI scans. We applied a cost function to assess the benefit of using this classifier in the triaging of individuals in a clinical trial-recruitment setting. Results The optimal follow-up time for classification of Ctrls vs PreAD was ¿t¿>¿2.5¿years, and hence, only subjects within this temporal span are used for evaluation (15 Ctrls, 10 PreAD). The longitudinal voxel-based classifier achieved an AUC¿=¿0.87 (95%CI 0.72–0.97). The brain regions that showed the highest discriminative power to detect amyloid abnormalities were the medial, inferior, and lateral temporal lobes; precuneus; caudate heads; basal forebrain; and lateral ventricles. Conclusions Our work supports that machine learning applied to longitudinal brain volumetric changes can be used to predict, with high precision, the presence of amyloid abnormalities in cognitively unimpaired subjects. Used as a triaging method to identify a fixed number of amyloid-positive individuals, this longitudinal voxel-wise classifier is expected to avoid 55% of unnecessary CSF and/or PET scans and reduce economic cost by 40%.
CitationPetrone, P. [et al.]. Prediction of amyloid pathology in cognitively unimpaired individuals using voxel-wise analysis of longitudinal structural brain MRI. "Alzheimers Research & Therapy", 17 Agost 2019, vol. 11, núm. 72, p. 1-13. 
URIhttp://hdl.handle.net/2117/175733
DOI10.1186/s13195-019-0526-8
ISSN1758-9193
Publisher versionhttps://alzres.biomedcentral.com/articles/10.1186/s13195-019-0526-8
Collections
  • Departament de Teoria del Senyal i Comunicacions - Articles de revista [2.406]
  • Doctorat en Teoria del Senyal i Comunicacions - Articles de revista [165]
  • GPI - Grup de Processament d'Imatge i Vídeo - Articles de revista [118]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
AZRT-S-19-00083.pdf3,036MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina