sLASs: a fully automatic auto-tuned linear algebra library based on OpenMP extensions implemented in OmpSs (LASs Library)
View/Open
JPDC(1).pdf (1,321Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/175670
Document typeArticle
Defense date2020-04-01
PublisherElsevier
Rights accessRestricted access - publisher's policy
(embargoed until 2022-01-03)
Abstract
In this work we have implemented a novel Linear Algebra Library on top of the task-based runtime OmpSs-2. We have used some of the most advanced OmpSs-2 features; weak dependencies and regions, together with the final clause for the implementation of auto-tunable code for the BLAS-3 trsm routine and the LAPACK routines npgetrf and npgesv. All these implementations are part of the first prototype of sLASs library, a novel library for auto-tunable codes for linear algebra operations based on LASs library. In all these cases, the use of the OmpSs-2 features presents an improvement in terms of execution time against other reference libraries such as, the original LASs library, PLASMA, ATLAS and Intel MKL. These codes are able to reduce the execution time in about 18% on big matrices, by increasing the IPC on gemm and reducing the time of task instantiation. For a few medium matrices, benefits are also seen. For small matrices and a subset of medium matrices, specific optimizations that allow to increase the degree of parallelism in both, gemm and trsm tasks, are applied. This strategy achieves an increment in performance of up to 40%.
Description
© 2019 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationValero-Lara, P. [et al.]. sLASs: a fully automatic auto-tuned linear algebra library based on OpenMP extensions implemented in OmpSs (LASs Library). "Journal of parallel and distributed computing", 1 Abril 2020, vol. 138, p. 153-171.
ISSN0743-7315
Files | Description | Size | Format | View |
---|---|---|---|---|
JPDC(1).pdf![]() | 1,321Mb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 Generic