Mostra el registre d'ítem simple

dc.contributor.authorRodríguez Suñé, Laura
dc.contributor.authorEscalora, M.
dc.contributor.authorJohnson, Allan
dc.contributor.authorCojocaru, Crina
dc.contributor.authorAkozbek, Neset
dc.contributor.authorCoppens, Zachary
dc.contributor.authorPérez Salinas, Daniel
dc.contributor.authorWall, Simon
dc.contributor.authorTrull Silvestre, José Francisco
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Física Computacional i Aplicada
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2020-01-22T17:02:55Z
dc.date.available2020-01-22T17:02:55Z
dc.date.issued2020-01-03
dc.identifier.citationRodriguez, L. [et al.]. Study of second and third harmonic generation from an indium tin oxide nanolayer: Influence of nonlocal effects and hot electrons. "APL Photonics", 3 Gener 2020, vol. 5, núm. 1, p. 010801-1-010801-9.
dc.identifier.issn2378-0967
dc.identifier.urihttp://hdl.handle.net/2117/175463
dc.description.abstractWe report comparative experimental and theoretical studies of the second and third harmonic generation from a 20 nm-thick indium tin oxide layer in proximity of the epsilon-near-zero condition. Using a tunable optical parametric amplifier, we record both spectral and angular dependence of the generated harmonic signals close to this particular point. In addition to the enhancement of the second harmonic efficiency close to the epsilon-near-zero wavelength, at oblique incidence, third harmonic generation displays an unusual behavior, predicted but not observed before. We implement a comprehensive, first-principles hydrodynamic approach able to simulate our experimental conditions. The model is unique, flexible, and able to capture all major physical mechanisms that drive the electrodynamic behavior of conductive oxide layers: nonlocal effects, which blueshift the epsilon-near-zero resonance by tens of nanometers; plasma frequency redshift due to variations of the effective mass of hot carriers; charge density distribution inside the layer, which determines the nonlinear surface and magnetic interactions; and the nonlinearity of the background medium triggered by bound electrons. We show that, by taking these contributions into account, our theoretical predictions are in very good qualitative and quantitative agreement with our experimental results. We expect that our results can be extended to other geometries where epsilon-near-zero nonlinearity plays an important role.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshNonlinear optics
dc.subject.lcshSimulation methods
dc.subject.lcshMaxwell equations
dc.subject.otherElectronic transport
dc.subject.otherDielectric properties
dc.subject.otherElectron gas
dc.subject.otherMaxwell equations
dc.subject.otherNonlinear optical properties
dc.subject.otherThird-harmonic generation
dc.titleStudy of second and third harmonic generation from an indium tin oxide nanolayer: Influence of nonlocal effects and hot electrons
dc.typeArticle
dc.subject.lemacÒptica no lineal
dc.subject.lemacSimulació, Mètodes de
dc.subject.lemacEquacions de Maxwell
dc.contributor.groupUniversitat Politècnica de Catalunya. DONLL - Dinàmica no Lineal, Òptica no Lineal i Làsers
dc.identifier.doi10.1063/1.5129627
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://aip.scitation.org/doi/10.1063/1.5129627
dc.rights.accessOpen Access
local.identifier.drac26570462
dc.description.versionPostprint (published version)
local.citation.authorRodriguez, L.; Escalora, M.; Johnson, A. S.; Cojocaru, C.; Akozbek, N.; Coppens, Z. J.; Perez-Salinas, D.; Wall, S.; Trull, J.
local.citation.publicationNameAPL Photonics
local.citation.volume5
local.citation.number1
local.citation.startingPage010801-1
local.citation.endingPage010801-9


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple