Show simple item record

dc.contributor.authorMarras, Simone
dc.contributor.authorVázquez, Mariano
dc.contributor.authorJorba Casellas, Oriol
dc.contributor.authorAubry, Romain
dc.contributor.authorHouzeaux, Guillaume
dc.contributor.authorBaldasano Recio, José María
dc.identifier.citationMarras, S. [et al.]. Application of a Galerkin finite element scheme to atmospheric buoyant and gravity driven flows. A: AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. "Proceedings of the 48th AIAA Aerospace Sciences Meeting Vol. 9". Orlando: 2010, p. 1-10.
dc.description.abstractThe application of a new finite element (FE) technique for the solution of stratified, non-hydrostatic, low-Mach number flows is introduced in the context of mesoscale atmospheric modeling. In this framework, a Compressible Variational Multiscale (VMS-C) finite element algorithm to solve the conservative form of the Euler equations coupled to the conservation of potential temperature was developed. This methodology is new in the fields of Computational Fluid Dynamics for compressible flows and in Numerical Weather Prediction (NWP), and we mean to show its ability to maintain stability in the solution of thermal, gravity-driven flows in a stratified environment. This effort is justified by the advantages offered by a Galerkin finite element algorithm when massive parallel efficiency is a constraint, which is indeed becoming the paradigm for both CFD and NWP practitioners. The algorithm is validated against the standard test cases specifically designed to test the dynamical core of new atmospheric models. In the context of buoyant and gravity flows three tests are selected among those presented in the literature: the warm rising smooth anomaly, and two versions of the density current evolution from a cold disturbance defined by different initial conditions. The reference quantitative and qualitative values are taken from the literature and from the output obtained with the Weather Research and Forecasting model (WRF-ARW), a state-of-the-art research NWP model.
dc.format.extent10 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria
dc.subject.lcshWeather forecasting -- Mathematical models
dc.subject.lcshComputational fluid dynamics
dc.subject.lcshHigh performance computing
dc.titleApplication of a Galerkin finite element scheme to atmospheric buoyant and gravity driven flows
dc.typeConference report
dc.subject.lemacMeteorologia -- Models matemàtics
dc.subject.lemacDinámica de fluids computacional
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
local.citation.authorMarras, S.; Vázquez, M.; Jorba, O.; Aubry, R.; Houzeaux, G.; Baldasano, J.
local.citation.contributorAIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
local.citation.publicationNameProceedings of the 48th AIAA Aerospace Sciences Meeting Vol. 9

Files in this item


This item appears in the following Collection(s)

    Show simple item record

    All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder