Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Near real-time estimation of end-to-end performance in converged fixed-mobile networks

Thumbnail
View/Open
[ComCom-rev] Near Real-Time End-to-End Performance Estimation_no underlined.pdf (763,2Kb)
Share:
 
 
10.1016/j.comcom.2019.11.052
 
  View Usage Statistics
Cita com:
hdl:2117/175328

Show full item record
Bernal Escribano, Álvaro
Richart Gutiérrez, Matías MarioMés informació
Ruiz Ramírez, MarcMés informacióMés informacióMés informació
Castro Casales, Alberto
Velasco Esteban, Luis DomingoMés informacióMés informacióMés informació
Document typeArticle
Defense date2020-01-15
PublisherElsevier
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectMETRO-HAUL - METRO High bandwidth, 5G Application-aware optical network, with edge storage, compUte and low Latency (EC-H2020-761727)
COGNITIVE 5G APPLICATION-AWARE OPTICAL METRO NETWORKS INTEGRATING MONITORING, DATA ANALYTICS AND OPTIMIZATION (AEI-TEC2017-90097-R)
Abstract
The independent operation of mobile and fixed network segments is one of the main barriers that prevents improving network performance while reducing capital expenditures coming from overprovisioning. In particular, a coordinated dynamic network operation of both network segments is essential to guarantee end-to-end Key Performance Indicators (KPI), on which new network services rely on. To achieve such dynamic operation, accurate estimation of end-to-end KPIs is needed to trigger network reconfiguration before performance degrades. In this paper, we present a methodology to achieve an accurate, scalable, and predictive estimation of end-to-end KPIs with sub-second granularity near real-time in converged fixed-mobile networks. Specifically, we extend our CURSA-SQ methodology for mobile network traffic analysis, to enable converged fixed-mobile network operation. CURSA-SQ combines simulation and machine learning fueled with real network monitoring data. Numerical results validate the accuracy, robustness, and usability of the proposed CURSA-SQ methodology for converged fixed-mobile network scenarios.
Description
© <2019> Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationBernal, A. [et al.]. Near real-time estimation of end-to-end performance in converged fixed-mobile networks. "Computer communications", 15 Gener 2020, vol. 150, p. 393-404. 
URIhttp://hdl.handle.net/2117/175328
DOI10.1016/j.comcom.2019.11.052
ISSN0140-3664
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S014036641930800X
Collections
  • Departament d'Arquitectura de Computadors - Articles de revista [910]
  • GCO - Grup de Comunicacions Òptiques - Articles de revista [216]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
[ComCom-rev] Ne ... timation_no underlined.pdf763,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina