Show simple item record

dc.contributor.authorGarzón-Alvarado, D.A.
dc.contributor.authorRamírez-Martínez, A.M.
dc.contributor.authorDuque Daza, C.A.
dc.date.accessioned2020-01-17T12:56:06Z
dc.date.available2020-01-17T12:56:06Z
dc.date.issued2013
dc.identifier.citationGarzón-Alvarado, D.A.; Ramírez-Martínez, A.M.; Duque Daza, C.A. Solución en dominios cuadrados de ecuaciones de difusión-convección mediante elementos finitos estocásticos espectrales en conjunto con el método de Petrov Galerkin en contracorriente. "Revista internacional de métodos numéricos para cálculo y diseño en ingeniería", 2013, vol. 29, núm. 4.
dc.identifier.issn1886-158X
dc.identifier.issn0213-1315
dc.identifier.urihttp://hdl.handle.net/2117/175180
dc.description.abstractSe desarrolla la solución numérica de 2 problemas de difusión-convección (DC), mediante el empleo del método de elementos finitos de Petrov-Galerkin en contracorriente (SUPG). Los parámetros que definen el comportamiento de las ecuaciones se modelan como campos estocásticos, y son los siguientes: la velocidad convectiva, la difusión y la capacidad calorífica como valores de tipo aleatorio. Por tanto, se combina el método SUPG para ecuaciones de DC, con convección dominante, con el método de los elementos finitos estocásticos espectrales. Los parámetros de cada ecuación se han descrito mediante la expansión de Karhunen-Loève, mientras que la incógnita se representa mediante la expansión de los polinomios de caos. Los objetivos del artículo son: en primer lugar, estudiar la influencia de los campos estocásticos en la solución de problemas de DC con SUPG, y en segundo lugar obtener los patrones de cada coeficiente de la expansión en polinomios de caos. Los resultados muestran la versatilidad del método para solucionar diferentes problemas físicos gracias a la generalidad en la descripción estadística de la solución, y la riqueza en la representación de las zonas donde se halla la mayor variabilidad en la respuesta. Los patrones muestran la incertidumbre en la incógnita que depende de la dinámica de la difusión, la velocidad convectiva y el tipo de solución utilizado.
dc.description.abstractIn this paper we have developed the numerical solution of two problems of diffusion-convection (DC), using the finite element method of Streamline Upwind Petrov-Galerkin (SUPG). The parameters that define the behavior of the equations are modeled as stochastic fields, specifically, are used: the convective velocity, diffusion and heat capacity as values of random type. Therefore, we have included SUPG method to DC, with dominant convection, with the stochastic spectral finite element method. Each parameter was described by Karhunen-Loève expansion, while the unknown is represented by the polynomial expansion of the chaos. The objectives of the paper are: 1. To study the influence of stochastic fields in solving problems with SUPG DC and 2. Get the solution of each expansion unknown variable. The results show the versatility of the method for solving different physical problems due to the generality of the statistical description of the solution and the richness in the representation of the areas where there is the greater variability in response. The patterns shown in the unknown uncertainty depends on the dynamics of diffusion, convective velocity and the type of solution used.
dc.language.isospa
dc.publisherUniversitat Politècnica de Catalunya. CIMNE
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/deed.es
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
dc.subject.lcshNumerical analysis
dc.subject.otherPetrov-Galerkin
dc.subject.otherElementos finitos estocásticos
dc.subject.otherStreamline Upwind Petrov Galerkin
dc.subject.otherAdvección
dc.subject.otherDifusión
dc.subject.otherStochastic finite element
dc.subject.otherAdvection
dc.subject.otherDiffusion
dc.titleSolución en dominios cuadrados de ecuaciones de difusión-convección mediante elementos finitos estocásticos espectrales en conjunto con el método de Petrov Galerkin en contracorriente
dc.title.alternativeSolution on square domains of reaction-convection-diffusion equations using spectral stochastic finite element and streamline upwind Galerkin Petrov
dc.typeArticle
dc.subject.lemacAnàlisi numèrica
dc.identifier.doi10.1016/j.rimni.2013.07.001
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.citation.publicationNameRevista internacional de métodos numéricos para cálculo y diseño en ingeniería
local.citation.volume29
local.citation.number4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 3.0 Generic