dc.contributor.author | Ball, Simeon Michael |
dc.contributor.author | Lavrauw, Michel |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2020-01-16T13:26:05Z |
dc.date.available | 2020-08-01T00:28:23Z |
dc.date.issued | 2019-08-01 |
dc.identifier.citation | Ball, S.; Lavrauw, M. Arcs and tensors. "Designs, Codes, and Cryptography", 1 Agost 2019, vol. 88, núm. 1, p. 17-31. |
dc.identifier.issn | 1573-7586 |
dc.identifier.uri | http://hdl.handle.net/2117/175074 |
dc.description | This is a post-peer-review, pre-copyedit version of an article published in Designs, Codes, and Cryptography. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10623-019-00668-z |
dc.description.abstract | To an arc A of PG(k-1,q) of size q+k-1-t we associate a tensor in ¿¿k,t(A)¿¿k-1 , where ¿k,t denotes the Veronese map of degree t defined on PG(k-1,q) . As a corollary we prove that for each arc A in PG(k-1,q) of size q+k-1-t , which is not contained in a hypersurface of degree t, there exists a polynomial F(Y1,…,Yk-1) (in k(k-1) variables) where Yj=(Xj1,…,Xjk) , which is homogeneous of degree t in each of the k-tuples of variables Yj , which upon evaluation at any (k-2) -subset S of the arc A gives a form of degree t on PG(k-1,q) whose zero locus is the tangent hypersurface of A at S, i.e. the union of the tangent hyperplanes of A at S. This generalises the equivalent result for planar arcs ( k=3 ), proven in [2], to arcs in projective spaces of arbitrary dimension. A slightly weaker result is obtained for arcs in PG(k-1,q) of size q+k-1-t which are contained in a hypersurface of degree t. We also include a new proof of the Segre–Blokhuis–Bruen–Thas hypersurface associated to an arc of hyperplanes in PG(k-1,q) . |
dc.format.extent | 15 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria |
dc.subject.lcsh | Combinatorial analysis |
dc.subject.other | Arcs |
dc.subject.other | MDS codes |
dc.title | Arcs and tensors |
dc.type | Article |
dc.subject.lemac | Anàlisi combinatòria |
dc.contributor.group | Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics |
dc.identifier.doi | 10.1007/s10623-019-00668-z |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s10623-019-00668-z |
dc.rights.access | Open Access |
local.identifier.drac | 25821578 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82166-P/ES/COMBINATORIA GEOMETRICA, ALGEBRAICA Y PROBABILISTICA/ |
local.citation.author | Ball, S.; Lavrauw, M. |
local.citation.publicationName | Designs, Codes, and Cryptography |
local.citation.volume | 88 |
local.citation.number | 1 |
local.citation.startingPage | 17 |
local.citation.endingPage | 31 |