Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.707 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Arcs and tensors

Thumbnail
View/Open
Article principal (318,9Kb)
Share:
 
 
10.1007/s10623-019-00668-z
 
  View Usage Statistics
Cita com:
hdl:2117/175074

Show full item record
Ball, Simeon MichaelMés informacióMés informacióMés informació
Lavrauw, Michel
Document typeArticle
Defense date2019-08-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectCOMBINATORIA GEOMETRICA, ALGEBRAICA Y PROBABILISTICA (AEI-MTM2017-82166-P)
Abstract
To an arc A of PG(k-1,q) of size q+k-1-t we associate a tensor in ¿¿k,t(A)¿¿k-1 , where ¿k,t denotes the Veronese map of degree t defined on PG(k-1,q) . As a corollary we prove that for each arc A in PG(k-1,q) of size q+k-1-t , which is not contained in a hypersurface of degree t, there exists a polynomial F(Y1,…,Yk-1) (in k(k-1) variables) where Yj=(Xj1,…,Xjk) , which is homogeneous of degree t in each of the k-tuples of variables Yj , which upon evaluation at any (k-2) -subset S of the arc A gives a form of degree t on PG(k-1,q) whose zero locus is the tangent hypersurface of A at S, i.e. the union of the tangent hyperplanes of A at S. This generalises the equivalent result for planar arcs ( k=3 ), proven in [2], to arcs in projective spaces of arbitrary dimension. A slightly weaker result is obtained for arcs in PG(k-1,q) of size q+k-1-t which are contained in a hypersurface of degree t. We also include a new proof of the Segre–Blokhuis–Bruen–Thas hypersurface associated to an arc of hyperplanes in PG(k-1,q) .
Description
This is a post-peer-review, pre-copyedit version of an article published in Designs, Codes, and Cryptography. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10623-019-00668-z
CitationBall, S.; Lavrauw, M. Arcs and tensors. "Designs, Codes, and Cryptography", 1 Agost 2019, vol. 88, núm. 1, p. 17-31. 
URIhttp://hdl.handle.net/2117/175074
DOI10.1007/s10623-019-00668-z
ISSN1573-7586
Publisher versionhttps://link.springer.com/article/10.1007/s10623-019-00668-z
Collections
  • GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics - Articles de revista [79]
  • Departament de Matemàtiques - Articles de revista [3.001]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
arcsandtensors.pdfArticle principal318,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina