Arcs and tensors

View/Open
Cita com:
hdl:2117/175074
Document typeArticle
Defense date2019-08-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
To an arc A of PG(k-1,q) of size q+k-1-t we associate a tensor in ¿¿k,t(A)¿¿k-1 , where ¿k,t denotes the Veronese map of degree t defined on PG(k-1,q) . As a corollary we prove that for each arc A in PG(k-1,q) of size q+k-1-t , which is not contained in a hypersurface of degree t, there exists a polynomial F(Y1,…,Yk-1) (in k(k-1) variables) where Yj=(Xj1,…,Xjk) , which is homogeneous of degree t in each of the k-tuples of variables Yj , which upon evaluation at any (k-2) -subset S of the arc A gives a form of degree t on PG(k-1,q) whose zero locus is the tangent hypersurface of A at S, i.e. the union of the tangent hyperplanes of A at S. This generalises the equivalent result for planar arcs ( k=3 ), proven in [2], to arcs in projective spaces of arbitrary dimension. A slightly weaker result is obtained for arcs in PG(k-1,q) of size q+k-1-t which are contained in a hypersurface of degree t. We also include a new proof of the Segre–Blokhuis–Bruen–Thas hypersurface associated to an arc of hyperplanes in PG(k-1,q) .
Description
This is a post-peer-review, pre-copyedit version of an article published in Designs, Codes, and Cryptography. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10623-019-00668-z
CitationBall, S.; Lavrauw, M. Arcs and tensors. "Designs, Codes, and Cryptography", 1 Agost 2019, vol. 88, núm. 1, p. 17-31.
ISSN1573-7586
Publisher versionhttps://link.springer.com/article/10.1007/s10623-019-00668-z
Files | Description | Size | Format | View |
---|---|---|---|---|
arcsandtensors.pdf | Article principal | 318,9Kb | View/Open |