Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.086 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Matemàtica Aplicada
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Matemàtica Aplicada
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement error in epidemiologic studies of air pollution based on land-use regression models

Thumbnail
View/Open
10_kwt127.pdf (124,3Kb)
 
10.1093/aje/kwt127
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/174158

Show full item record
Basagaña Flores, Xavier
Aguilera, Inmaculada
Rivera, Marcela
Agis Cherta, DavidMés informacióMés informació
Foraster, María
Marrugat, Jaume
Elosua, Roberto
Künzli, Nino
Document typeArticle
Defense date2013-10-15
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.
CitationBasagaña, X. [et al.]. Measurement error in epidemiologic studies of air pollution based on land-use regression models. "American journal of epidemiology", 15 Octubre 2013, vol. 178, núm. 8, p. 1342-1346. 
URIhttp://hdl.handle.net/2117/174158
DOI10.1093/aje/kwt127
ISSN0002-9262
Publisher versionhttps://academic.oup.com/aje/article/178/8/1342/83800
Other identifiershttps://www.researchgate.net/publication/257534864_Measurement_Error_in_Epidemiologic_Studies_of_Air_Pollution_Based_on_Land-Use_Regression_Models
Collections
  • Doctorat en Matemàtica Aplicada - Articles de revista [112]
  • CoDAlab - Control, Dades i Intel·ligència Artificial - Articles de revista [306]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
10_kwt127.pdf124,3KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina