Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.866 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GAECE - Grup d'Accionaments Elèctrics amb Commutació Electrònica
  • Capítols de llibre
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GAECE - Grup d'Accionaments Elèctrics amb Commutació Electrònica
  • Capítols de llibre
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using machine learning and accelerometry data for differential diagnosis of Parkinson’s disease and essential tremor

Thumbnail
View/Open
manuscript (1,589Mb) (Restricted access)   Request copy 

Què és aquest botó?

Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:

  • Disposem del correu electrònic de l'autor
  • El document té una mida inferior a 20 Mb
  • Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
 
10.1007/978-3-030-31019-6_32
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/174098

Show full item record
Loaiza Duque, Julián D.
González Vargas, Andrés Mauricio
Sánchez Egea, Antonio JoséMés informacióMés informacióMés informació
González Rojas, Hernán AlbertoMés informacióMés informacióMés informació
Document typePart of book or chapter of book
Defense date2019-10-09
PublisherSpringer
Rights accessRestricted access - publisher's policy
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Parkinson’s disease (PD) and Essential Tremor (ET) are the most common tremor syndromes in the world. Currently, a specific Single Photon Emission Computed Tomography (123I-FP-CIT SPECT) has proven to be an effective tool for the diagnosis of these diseases (97% sensitivity and 100% specificity). However, this test is invasive and expensive, and not all countries can have a SPECT system for an accurate differential diagnosis of PD patients. Clinical evaluation by a neurologist remains the gold standard for PD diagnosis, although the accuracy of this protocol depends on the experience and expertise of the physician. Wearable devices have been found to be a potential tool to help in differential diagnosis of PD and ET in early or complex cases. In this paper, we analyze the linear acceleration of the hand tremor recorded with a built-in accelerometer of a mobile phone, with a sampling frequency of 100 Hz. This hand tremor signal was thoroughly analyzed to extract different kinematic features in the frequency domain. These features were used to explore different Machine Learning methods to automatically classify and differentiate between healthy subjects and hand tremor patients (HETR Group) and, subsequently, patients with PD and ET (ETPD Group). Sensitivity of 90.0% and Specificity of 100.0% were obtained with classifiers of the HETR group. On the other hand, classifiers with Sensitivity ranges from 90.0% to 100.0% and Specificity from 80% to 100% were obtained for the ETPD group. These results indicate that the method proposed can be a potential tool to help the clinicians on differential diagnosis in complex or early hand tremor cases
CitationLoaiza , J. [et al.]. Using machine learning and accelerometry data for differential diagnosis of Parkinson’s disease and essential tremor. A: "Workshop on Engineering Applications". Berlín: Springer, 2019, p. 368-378. 
URIhttp://hdl.handle.net/2117/174098
DOI10.1007/978-3-030-31019-6_32
DLhttps://doi.org/10.1007/978-3-030-31019-6_32
ISBN978-3-030-31019-6
Publisher versionhttps://link.springer.com/chapter/10.1007%2F978-3-030-31019-6_32
Collections
  • GAECE - Grup d'Accionaments Elèctrics amb Commutació Electrònica - Capítols de llibre [3]
  • TECNOFAB - Grup de Recerca en Tecnologies de Fabricació - Capítols de llibre [7]
  • Departament d'Enginyeria mecànica - Capítols de llibre [26]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
LoaizaDuque2019 ... hineLearningAndAcceler.pdfBlockedmanuscript1,589MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina