dc.contributor.author | Albonda, Haider Daami Resin |
dc.contributor.author | Pérez Romero, Jordi |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions |
dc.date.accessioned | 2019-12-13T18:56:57Z |
dc.date.issued | 2019 |
dc.identifier.citation | Albonda, H.; Perez-Romero, J. Reinforcement learning-based radio access network slicing for a 5G system with support for cellular V2X. A: International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications. "Cognitive Radio-Oriented Wireless Networks: 14th EAI International Conference, CrownCom 2019: Poznan, Poland: June 11-12, 2019: proceedings". Berlín: Springer, 2019, p. 262-276. |
dc.identifier.isbn | 978-3-030-25747-7 |
dc.identifier.uri | http://hdl.handle.net/2117/173933 |
dc.description.abstract | 5G mobile systems are expected to host a variety of services and applications such as enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communications (URLLC). Therefore, the major challenge in designing the 5G networks is how to support different types of users and applications with different quality-of-service requirements under a single physical network infrastructure. Recently, Radio Access Network (RAN) slicing has been introduced as a promising solution to address these challenges. In this direction, our paper investigates the RAN slicing problem when providing two generic services of 5G, namely eMBB and Cellular Vehicle-to-everything (V2X). We propose an efficient RAN slicing scheme based on offline reinforcement learning that allocates radio resources to different slices while accounting for their utility requirements and the dynamic changes in the traffic load in order to maximize efficiency of the resource utilization. A simulation-based analysis is presented to assess the performance of the proposed solution. |
dc.format.extent | 15 p. |
dc.language.iso | eng |
dc.publisher | Springer |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Comunicacions mòbils |
dc.subject.lcsh | Mobile communication systems |
dc.subject.lcsh | Wireless communication systems |
dc.subject.other | Vehicle-to-everything (V2X) |
dc.subject.other | Network slicing |
dc.subject.other | Reinforcement learning |
dc.title | Reinforcement learning-based radio access network slicing for a 5G system with support for cellular V2X |
dc.type | Conference report |
dc.subject.lemac | Comunicacions mòbils, Sistemes de |
dc.subject.lemac | Comunicació sense fil, Sistemes de |
dc.contributor.group | Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils |
dc.identifier.doi | 10.1007/978-3-030-25748-4_20 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://link.springer.com/chapter/10.1007/978-3-030-25748-4_20 |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 26130635 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-82651-R/ES/SOFTWARIZACION Y OPTIMIZACION AUTOMATICA DE REDES DE ACCESO RADIO 5G MULTI-TENANT/ |
dc.date.lift | 10000-01-01 |
local.citation.author | Albonda, H.; Perez-Romero, J. |
local.citation.contributor | International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications |
local.citation.pubplace | Berlín |
local.citation.publicationName | Cognitive Radio-Oriented Wireless Networks: 14th EAI International Conference, CrownCom 2019: Poznan, Poland: June 11-12, 2019: proceedings |
local.citation.startingPage | 262 |
local.citation.endingPage | 276 |