Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.707 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematically optimized, recursive prepartitioning strategies for k-anonymous microaggregation of large-scale datasets

Thumbnail
View/Open
versió postprint (2,504Mb)
Share:
 
 
10.1016/j.eswa.2019.113086
 
  View Usage Statistics
Cita com:
hdl:2117/173796

Show full item record
Pallarès Segarra, EsteveMés informacióMés informacióMés informació
Rebollo-Monedero, David
Rodríguez Hoyos, Ana Fernanda
Estrada Jiménez, José Antonio
Mezher, Ahmad MohamadMés informació
Forné Muñoz, JorgeMés informacióMés informacióMés informació
Document typeArticle
Defense date2019-11-11
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectMICROAGREGACION ANONIMA EN ENCUESTAS DEMOGRAFICAS A GRAN ESCALA (MINECO-TIN2014-58259-JIN)
Abstract
The technical contents of this work fall within the statistical disclosure control (SDC) field, which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating respondents. A widely known technique to solve the problem of protecting the privacy of the respondents involved beyond the mere suppression of their identifiers is the k-anonymous microaggregation. Unfortunately, most microaggregation algorithms that produce competitively low levels of distortions exhibit a superlinear running time, typically scaling with the square of the number of records in the dataset. This work proposes and analyzes an optimized prepartitioning strategy to reduce significantly the running time for the k-anonymous microaggregation algorithm operating on large datasets, with mild loss in data utility with respect to that of MDAV, the underlying method. The optimization strategy is based on prepartitioning a dataset recursively until the desired k-anonymity parameter is achieved. Traditional microaggregation algorithms have quadratic computational complexity in the form T(n2). By using the proposed method and fixing the number of recurrent prepartitions we obtain subquadratic complexity in the form T(n3/2), T(n4/3), ..., depending on the number of prepartitions. Alternatively, fixing the ratio between the size of the microcell and the macrocell on each prepartition, quasilinear complexity in the form T(nlog¿n) is achieved. Our method is readily applicable to large-scale datasets with numerical demographic attributes.
Description
© <2019> Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationPallares, E. [et al.]. Mathematically optimized, recursive prepartitioning strategies for k-anonymous microaggregation of large-scale datasets. "Expert systems with applications", 11 Novembre 2019, vol. 144, p. 113086:1-113086:17. 
URIhttp://hdl.handle.net/2117/173796
DOI10.1016/j.eswa.2019.113086
ISSN0957-4174
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0957417419308036
Collections
  • SISCOM - Smart Services for Information Systems and Communication Networks - Articles de revista [31]
  • Departament d'Enginyeria Telemàtica - Articles de revista [434]
  • Doctorat en Enginyeria Telemàtica - Articles de revista [88]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Pallares - Opti ... tioning 13082019 (AyJ).pdfversió postprint2,504MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina