Show simple item record

dc.contributor.authorBose, Archishman
dc.contributor.authorFarooqui, Azharuddin
dc.contributor.authorFerrero, Domenico
dc.contributor.authorSantarelli, Massimo
dc.contributor.authorLlorca Piqué, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Química
dc.date.accessioned2019-11-21T18:21:11Z
dc.date.available2019-11-21T18:21:11Z
dc.date.issued2019-03-01
dc.identifier.citationBose, A. [et al.]. Thermodynamic assessment of non-catalytic Ceria for syngas production by methane reduction and CO2 + H2O oxidation. "Materials for Renewable and Sustainable Energy", 1 Març 2019, vol. 8, núm. 1, p. 1-15.
dc.identifier.issn2194-1467
dc.identifier.urihttp://hdl.handle.net/2117/172858
dc.description.abstractChemical looping syngas production is a two-step redox cycle with oxygen carriers (metal oxides) circulating between two interconnected reactors. In this paper, the performance of pure CeO2/Ce2O3 redox pair was investigated for low-temperature syngas production via methane reduction together with identification of optimal ideal operating conditions. Comprehensive thermodynamic analysis for methane reduction and water and CO2 splitting was performed through process simulation by Gibbs free energy minimization in ASPEN Plus®. The reduction reactor was studied by varying the CH4/CeO2 molar ratio between 0.4 and 4 along with the temperature from 500 to 1000 °C. In the oxidation reactor, steam and carbon dioxide mixture oxidized the reduced metal back to CeO2, while producing simultaneous streams of CO and H2 respectively. Within the oxidation reactor, the flow and composition of the mixture gas were varied, together with reactor temperature between 500 and 1000 °C. The results indicate that the maximum CH4 conversion in the reduction reactor is achieved between 900 and 950 °C with CH4/CeO2 ratio of 0.7–0.8, while, for the oxidation reactor, the optimal condition can vary between 600 and 900 °C based on the requirement of the final product output (H2/CO). The system efficiency was around 62% for isothermal operations at 900 °C and complete redox reaction of the metal oxide.
dc.format.extent15 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria química
dc.subject.lcshThermodynamics
dc.subject.lcshCatalysts
dc.subject.lcshSynthesis gas
dc.subject.lcshOxidation
dc.subject.lcshOxidation-reduction reaction
dc.subject.otherOxygen Carriers
dc.subject.otherCeria
dc.subject.otherChemical looping
dc.subject.otherSyngas
dc.subject.otherThermodynamic Analysis
dc.titleThermodynamic assessment of non-catalytic Ceria for syngas production by methane reduction and CO2 + H2O oxidation
dc.typeArticle
dc.subject.lemacTermodinàmica
dc.subject.lemacCatalitzadors
dc.subject.lemacGas de síntesi
dc.subject.lemacOxidació
dc.subject.lemacReacció d'oxidació-reducció
dc.contributor.groupUniversitat Politècnica de Catalunya. NEMEN - Nanoenginyeria de materials aplicats a l'energia
dc.identifier.doi10.1007/s40243-019-0142-3
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40243-019-0142-3
dc.rights.accessOpen Access
drac.iddocument23941167
dc.description.versionPostprint (published version)
upcommons.citation.authorBose, A.; Farooqui, A.; Ferrero, D.; Santarelli, M.; Llorca, J.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameMaterials for Renewable and Sustainable Energy
upcommons.citation.volume8
upcommons.citation.number1
upcommons.citation.startingPage1
upcommons.citation.endingPage15


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain