Mass sensing for the advanced fabrication of nanomechanical resonators

Cita com:
hdl:2117/172744
Document typeArticle
Defense date2019-09-03
PublisherACS
Rights accessOpen Access
ProjectAGR-INSTITUTO DE CIENCIAS FOTONICAS (MINECO-SEV-2015-0522)
RESONADORES MECANICOS DE UNA Y DOS DIMENSIONES (MINECO-FIS2015-69831-P)
SUPERCONDUCTIVIDAD Y NEMS (AEI-RTI2018-097953-B-I00)
NANOESTRUCTURAS ESPINTRONICAS PARA TECNOLOGIAS DE LA INFORMACION CON EFICIENCIA ENERGETICA (AEI-MAT2017-82970-C2-1-R)
NANOESTRUCTURAS ESPINTRONICAS PARA TECNOLOGIAS DE LA INFORMACION CON EFICIENCIA ENERGETICA (AEI-MAT2017-82970-C2-2-R)
RESONADORES MECANICOS DE UNA Y DOS DIMENSIONES (MINECO-FIS2015-69831-P)
SUPERCONDUCTIVIDAD Y NEMS (AEI-RTI2018-097953-B-I00)
NANOESTRUCTURAS ESPINTRONICAS PARA TECNOLOGIAS DE LA INFORMACION CON EFICIENCIA ENERGETICA (AEI-MAT2017-82970-C2-1-R)
NANOESTRUCTURAS ESPINTRONICAS PARA TECNOLOGIAS DE LA INFORMACION CON EFICIENCIA ENERGETICA (AEI-MAT2017-82970-C2-2-R)
Abstract
We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam-induced deposition (FEBID) is employed to selectively grow platinum particles at the free end of singly clamped nanotube cantilevers. The electron beam has two functions: it allows both to grow material on the nanotube and to track in real time the deposited mass by probing the noise-driven mechanical resonance of the nanotube. On the one hand, this detection method is highly effective as it can resolve mass deposition with a resolution in the zeptogram range; on the other hand, this method is simple to use and readily available to a wide range of potential users because it can be operated in existing commercial FEBID systems without making any modification. The presented method allows one to engineer hybrid nanomechanical resonators with precisely tailored functionalities. It also appears as a new tool for studying the growth dynamics of ultrathin nanostructures, opening new opportunities for investigating so far out-of-reach physics of FEBID and related methods.
CitationGruber, G. [et al.]. Mass sensing for the advanced fabrication of nanomechanical resonators. "Nano Letters", 3 Setembre 2019, vol. 19, núm. 10, p. 6987-6992.
Publisher versionhttps://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b02351
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
Mass sensing for the advanced fabrication.pdf | 2,538Mb | View/Open |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain