Show simple item record

dc.contributor.authorSánchez Balseca, Joseph
dc.contributor.authorPérez Foguet, Agustí
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Ambiental
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2019-11-18T23:26:41Z
dc.date.available2019-11-18T23:26:41Z
dc.date.issued2019
dc.identifier.citationSánchez-Balseca, J.; Pérez-Foguet, A. Assessing CoDa regression for modelling daily multivariate air pollutants evolution. A: International Workshop on Compositional Data Analysis. "Proceedings of the 8th International Workshop on Compositional Data Analysis (CoDaWork2019): Terrassa, 3-8 June, 2019". 2019, p. 143-150.
dc.identifier.isbn978-84-947240-2-2
dc.identifier.urihttp://hdl.handle.net/2117/172673
dc.description.abstractThe application of the theory of compositional data in multivariate spatio- temporal statistical models is still scarce, even though the results obtained are robust. Actually, this kind of models are attractive to pollution model developers, due to, its versatility in the spatio-temporal variables; but nobody has tried to use it with compositional data yet. The main differences between a conventional model and two CoDa models (with two sequential binary partition, SBP) were analyzed. The first SBP was proposed by pollutants relationship interpretation, and the second one was imposed as standard SBP (R studio). Initially the conventional temporal model is used to predicting pollution levels to fill missing data or predicting pollution levels on future days. The application of compositional data theory in conventional temporal air quality models allowed to obtain acceptable quality models, whose results were adjusted to the observed values. Nash-Sutcliffe Efficiency Index (NSE) and root- mean-square error (RMSE), were used to evaluating the model quality and fitted values respectively.
dc.format.extent8 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Contaminació atmosfèrica
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
dc.subject.lcshAir--Pollution--Mathematical models
dc.subject.otherAir quality
dc.subject.otherCompositional data
dc.subject.otherSBP
dc.subject.otherMultivariate response model
dc.subject.otherPrecision
dc.titleAssessing CoDa regression for modelling daily multivariate air pollutants evolution
dc.typeConference report
dc.subject.lemacAire -- Contaminació -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. EScGD - Engineering Sciences and Global Development
dc.relation.publisherversionhttps://webs.camins.upc.edu/codawork2019/proceedings/book-proceedings-CoDaWork2019-correctedv.pdf
dc.rights.accessOpen Access
local.identifier.drac25970674
dc.description.versionPostprint (published version)
local.citation.authorSánchez-Balseca, J.; Pérez-Foguet, A.
local.citation.contributorInternational Workshop on Compositional Data Analysis
local.citation.publicationNameProceedings of the 8th International Workshop on Compositional Data Analysis (CoDaWork2019): Terrassa, 3-8 June, 2019
local.citation.startingPage143
local.citation.endingPage150


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record