A skewness-aware matrix factorization approach for mesh-structured cloud services

View/Open
Cita com:
hdl:2117/172372
Document typeArticle
Defense date2019-08
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Online cloud services need to fulfill clients' requests scalably and fast. State-of-the-art cloud services are increasingly deployed as a distributed service mesh. Service to service communication is frequent in the mesh. Unfortunately, problematic events may occur between any pair of nodes in the mesh, therefore, it is vital to maximize the network visibility. A state-of-the-art approach is to model pairwise RTTs based on a latent factor model represented as a low-rank matrix factorization. A latent factor corresponds to a rank-1 component in the factorization model, and is shared by all node pairs. However, different node pairs usually experience a skewed set of hidden factors, which should be fully considered in the model. In this paper, we propose a skewness-aware matrix factorization method named SMF. We decompose the matrix factorization into basic units of rank-one latent factors, and progressively combine rank-one factors for different node pairs. We present a unifying framework to automatically and adaptively select the rank-one factors for each node pair, which not only preserves the low rankness of the matrix model, but also adapts to skewed network latency distributions. Over real-world RTT data sets, SMF significantly improves the relative error by a factor of 0.2 x to 10 x, converges fast and stably, and compactly captures fine-grained local and global network latency structures.
Description
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
CitationFu, Y. [et al.]. A skewness-aware matrix factorization approach for mesh-structured cloud services. "IEEE-ACM transactions on networking", Agost 2019, vol. 27, núm. 4, p. 1598-1611.
ISSN1063-6692
Publisher versionhttps://ieeexplore.ieee.org/document/8763920