Show simple item record

dc.contributor.authorGonzález, Marta
dc.contributor.authorSalvagni, Emiliano
dc.contributor.authorRodríguez Cabello, J.C.
dc.contributor.authorRupérez de Gracia, Elisa
dc.contributor.authorGil Mur, Francisco Javier
dc.contributor.authorManero Planella, José María
dc.contributor.authorPeña, Javier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2012-12-13T10:32:19Z
dc.date.created2012
dc.date.issued2012
dc.identifier.citationGonzález, M. [et al.]. A low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like. "Journal of biomedical materials research. Part A", 2012, vol. 00A, p. 000.
dc.identifier.issn1549-3296
dc.identifier.urihttp://hdl.handle.net/2117/17124
dc.description.abstractb-type titanium alloys with low Young’s modulus are desirable to reduce stress shielding effect and enhance bone remodeling for implants used to substitute failed hard tissue. For biomaterials application, the surface bioactivity is necessary to achieve optimal osseointegration. In the previous work, the low elastic modulus (43 GPa) Ti-25Nb-16Hf (wt %) alloy was mechanically and microstructurally characterized. In the present work, the biological behavior of Ti-25Nb- 16Hf was studied. The biological response was improved by surface modification. The metal surface was modified by oxygen plasma and subsequently silanized with 3-chloropropyl (triethoxy)silane for covalent immobilization of the elastin-like polymer. The elastin-like polymer employed exhibits RGD bioactive motives inspired to the extracellular matrix in order to improve cell adhesion and spreading. Upon modification, the achieved surface presented different physical and chemical properties, such as surface energy and chemical composition. Subsequently, osteoblast adhesion, cell numbers, and differentiation studies were performed to correlate surface properties and cell response. The general tendency was that the higher surface energy the higher cell adhesion. Furthermore, cell culture and immunofluorescence microscopy images demonstrated that RGD-modified surfaces improved adhesion and spreading of the osteoblast cell type.
dc.format.extent1 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshOsteoblasts
dc.titleA low elastic modulus Ti-Nb-Hf alloy bioactivated with an elastin-like
dc.typeArticle
dc.subject.lemacBiomaterials
dc.subject.lemacOssos -- Regeneració
dc.contributor.groupUniversitat Politècnica de Catalunya. CDAL - Centre de Disseny d'Aliatges Lleugers i Tractaments de Superfície
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1002/jbm.a.34388
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac11131770
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
dc.contributor.covenanteeUniversidad de Valladolid
local.citation.authorGonzález, M.; SALVAGNI, EMILIANO; RODRIGUEZ CABELLO, JOSE CARLOS; Ruperez, E.; Gil, F.J.; Manero, J.; Peña, J.
local.citation.publicationNameJournal of biomedical materials research. Part A
local.citation.volume00A
local.citation.startingPage000
local.citation.endingPage000


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain