Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing Functional Dependencies with Pattern Structures

Thumbnail
View/Open
computing_functional.pdf (298,0Kb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/17062

Show full item record
Baixeries i Juvillà, JaumeMés informacióMés informacióMés informació
Kaytoue, Mehdi
Napoli, Amedeo
Document typeConference report
Defense date2012
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The treatment of many-valued data with FCA has been achieved by means of scaling. This method has some drawbacks, since the size of the resulting formal contexts depends usually on the number of di erent values that are present in a table, which can be very large. Pattern structures have been proved to deal with many-valued data, offering a viable and sound alternative to scaling in order to represent and analyze sets of many-valued data with FCA. Functional dependencies have already been dealt with FCA using the binarization of a table, that is, creating a formal context out of a set of data. Unfortunately, although this method is standard and simple, it has an important drawback, which is the fact that the resulting context is quadratic in number of objects w.r.t. the original set of data. In this paper, we examine how we can extract the functional dependencies that hold in a set of data using pattern structures. This allows to build an equivalent concept lattice avoiding the step of binarization, and thus comes with better concept representation and computation.
CitationBaixeries, J.; Kaytoue, M.; Napoli, A. Computing Functional Dependencies with Pattern Structures. A: Concept Lattices and Their Applications. "Proceedings on the 9th Int Conf on CLA". Fuengirola: 2012, p. 175-186. 
URIhttp://hdl.handle.net/2117/17062
Publisher versionhttp://www.lsi.upc.edu/~jbaixer/recerca/cla12.pdf
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.249]
  • LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge - Ponències/Comunicacions de congressos [119]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
computing_functional.pdf298,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina