Show simple item record

dc.contributor.authorMagaña Nieto, Antonio
dc.contributor.authorMiranville, Alain
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2019-10-16T15:51:40Z
dc.date.available2019-10-16T15:51:40Z
dc.date.issued2019-09-12
dc.identifier.citationMagaña, A.; Miranville, A.; Quintanilla, R. On the time decay in phase-lag thermoelasticity with two temperatures. "Electronic Research Archive", 12 Setembre 2019, vol. 27, p. 7-19.
dc.identifier.issn2688-1594
dc.identifier.urihttp://hdl.handle.net/2117/170281
dc.description.abstractThe aim of this paper is to study the time decay of the solutions for two models of the one-dimensional phase-lag thermoelasticity with two temperatures. The first one is obtained when the heat flux vector and the inductive temperature are approximated by a second-order and first-order Taylor polynomial, respectively. In this case, the solutions decay in a slow way. The second model that we consider is obtained taking first-order Taylor approximations for the inductive thermal displacement, the inductive temperature and the heat flux. The decay is, therefore, of exponential type.
dc.format.extent13 p.
dc.language.isoeng
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMS
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshThermoelasticity
dc.subject.lcshDifferential equations, Partial
dc.subject.otherPhase-lag thermoelasticity
dc.subject.otherExponential stability
dc.subject.otherSlow decay
dc.subject.otherSpectral analysis
dc.titleOn the time decay in phase-lag thermoelasticity with two temperatures
dc.typeArticle
dc.subject.lemacTermoelasticitat
dc.subject.lemacEquacions diferencials parcials
dc.contributor.groupUniversitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.3934/era.2019007
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74H Dynamical problems
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34B Boundary value problems
dc.subject.amsClassificació AMS::35 Partial differential equations::35P Spectral theory and eigenvalue problems for partial differential operators
dc.relation.publisherversionhttps://aimsciences.org/article/doi/10.3934/era.2019007
dc.rights.accessOpen Access
drac.iddocument25836459
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2016-74934-P
upcommons.citation.authorMagaña, A.; Miranville, A.; Quintanilla, R.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameElectronic Research Archive
upcommons.citation.volume27
upcommons.citation.startingPage7
upcommons.citation.endingPage19


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder