Show simple item record

dc.contributor.authorCarmona Mejías, Ángeles
dc.contributor.authorEncinas Bachiller, Andrés Marcos
dc.contributor.authorMitjana Riera, Margarida
dc.contributor.authorMonsó Burgués, Enrique P.J.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada
dc.date.accessioned2019-10-02T08:31:03Z
dc.date.available2019-10-02T08:31:03Z
dc.date.issued2019
dc.identifier.citationCarmona, A. [et al.]. Generalizing the bottleneck matrix. A: Meeting of the International Linear Algebra Society. "Libro de ACTAS- 22nd Conference of the International Linear Algebra Society (ILAS)". 2019, p. 1-6.
dc.identifier.urihttp://hdl.handle.net/2117/169044
dc.description.abstractGiven the Laplacian matrix associated to a weighted graph and given x a single vertex of it, the bottleneck matrix (related to x) is the inverse matrix of the sub matrix of the Laplacian obtained by eliminating the row and the column corresponding to x. The bottleneck matrix is used to calculate the group inverse of the initial Laplacian matrix, for instance. In this work we have managed to generalize this situation twofold: in the sense of considering symmetric M–matrices related to Schr¨odinger operators acting on networks (doubly weighted graphs, where not only edges but also vertices are discriminated) and also by using sub-matrices of the initial one in which two, three or more rows and columns are erased, those corresponding to two, three or more vertices. We conceive that every symmetric M–matrix corresponds to a network where both a conductance on the edges and a weight on the vertices are introduced. Solving boundary value problems for Schr¨odinger’s operators throughout the whole network or just a part of it, we find the relation between the corresponding group inverse and inverse matrices respectively. Since the part of the network to be considered is arbitrary, the reduction in the order of the matrices is also arbitrary. The work is finished by exposing the application of our result to the calculation of the Green function of a path.
dc.format.extent6 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshMatrices
dc.subject.otherBottleneck matrix
dc.subject.otherSchrodinger operator
dc.subject.otherGreen’s function
dc.subject.otherM-matrix
dc.subject.otherGroup–inverse matrix
dc.titleGeneralizing the bottleneck matrix
dc.typeConference report
dc.subject.lemacMatrius (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. MAPTHE - Anàlisi matricial i Teoria Discreta del Potencial
dc.rights.accessOpen Access
drac.iddocument25638663
dc.description.versionPostprint (published version)
upcommons.citation.authorCarmona, A.; Encinas, A.; Mitjana, M.; Monso, E.
upcommons.citation.contributorMeeting of the International Linear Algebra Society
upcommons.citation.publishedtrue
upcommons.citation.publicationNameLibro de ACTAS- 22nd Conference of the International Linear Algebra Society (ILAS)
upcommons.citation.startingPage1
upcommons.citation.endingPage6


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain