Show simple item record

dc.contributor.authorHoxha, Ervin
dc.contributor.authorVidal Seguí, Yolanda
dc.contributor.authorPozo Montero, Francesc
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2019-09-27T12:43:28Z
dc.date.available2019-09-27T12:43:28Z
dc.date.issued2019
dc.identifier.citationHoxha, E.; Vidal, Y.; Pozo, F. Supervised classification with SCADA data for condition monitoring of wind turbines. A: ECCOMAS Thematic Conference Smart Structures and Materials. "9th ECCOMAS Thematic Conference on Smart Structures and Materials". 2019, p. 263-273.
dc.identifier.isbn978-84-949194-6-6
dc.identifier.urihttp://hdl.handle.net/2117/168838
dc.description.abstractThe reliability requirements of wind turbines have increased significantly in recent years inthe search for a lower impact on the cost of energy. In addition, the trend towards larger wind turbinesinstalled in remote locations has significantly increased the cost of repair or replacement of the compo-nent. In the wind industry, therefore, condition monitoring is crucial for maximum availability [1]. Thiscontribution makes a review of supervised machine learning classification techniques for wind turbinecondition monitoring using only SCADA data already available. That is, without installing extra sensorsor costly purpose-built data sensing equipment. Although there has been extensive research into the useof machine learning techniques for wind turbine monitoring, the more recent trend in this type of litera-ture is to focus on a specific WT sub-assembly: the bearings and planetary gearbox [2], the generator andpower converter [3], the blades [4], etc. Oil debris systems can detect pitting failures but cannot detectcracking faults. Vibration based systems can detect both pitting and cracking, but most cannot determinethe health of components in the planetary section. This work approaches condition monitoring of variouswind turbine components (torque actuator, pitch actuator, pitch sensor, and generator speed sensor) witha unique strategy. In particular, for this purpose, a review of supervised machine learning classificationtechniques is performed and analyzed.
dc.format.extent11 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshWind turbines
dc.subject.otherCondition Monitoring
dc.subject.otherFault Classification
dc.subject.otherWind Turbine
dc.subject.otherSCADA
dc.subject.otherData Based
dc.subject.otherMachine Learning
dc.titleSupervised classification with SCADA data for condition monitoring of wind turbines
dc.typeConference report
dc.subject.lemacAerogeneradors
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.rights.accessOpen Access
drac.iddocument25624034
dc.description.versionPostprint (published version)
upcommons.citation.authorHoxha, E.; Vidal, Y.; Pozo, F.
upcommons.citation.contributorECCOMAS Thematic Conference Smart Structures and Materials
upcommons.citation.publishedtrue
upcommons.citation.publicationName9th ECCOMAS Thematic Conference on Smart Structures and Materials
upcommons.citation.startingPage263
upcommons.citation.endingPage273


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain