Learning Action-oriented grasping for manipulation
View/Open
Action-based_Grasping_Short_version.pdf (865,8Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference lecture
Defense date2019
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
Abstract
Complex manipulation tasks require grasping strategies that simultaneously satisfy the stability and the semantic constraints that have to be satisfied for an action to be feasible, referred as action-oriented semantic grasp strategies. This study develops a framework using machine learning techniques to compute action-oriented semantic grasps. It takes a 3D model of the object and the action to be performed as input and provides a vector of action-oriented semantic grasps. We evaluate the performance of machine learning (particu- larly classification techniques) to determine which approaches perform better for this problem. Using the best approaches, a multi-model classification technique is developed. The proposed approach is evaluated in simulation to grasp different kitchenobjects using a parallel gripper. The results show that multi-model classification approach enhances the prediction accuracy.
The implemented system can be used as to automate the data
labeling process required for deep learning approaches.
CitationUd Din, M. [et al.]. Learning Action-oriented grasping for manipulation. A: IEEE International Conference on Emerging Technologies and Factory Automation. "Proceedings 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation". Institute of Electrical and Electronics Engineers (IEEE), 2019, p. 1575-1578.
ISBN978-1-7281-0302-0
Files | Description | Size | Format | View |
---|---|---|---|---|
Action-based_Grasping_Short_version.pdf![]() | 865,8Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain