Efficient simulation tools for real-time monitoring and control using model order reduction and data-driven techniques
View/Open
Cita com:
hdl:2117/168567
Chair / Department / Institute
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Document typeDoctoral thesis
Data de defensa2019-09-02
PublisherUniversitat Politècnica de Catalunya
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Numerical simulation, the use of computers to run a program which implements a mathematical model for a physical system, is an important part of today technological world. It is required in many scientific and engineering fields to study the behaviour of systems whose mathematical models are too complex to provide analytical solutions and it makes virtual evaluation of systems responses possible (virtual twins). This drastically reduces the number of experimental tests for accurate designs of the real system that the numerical model represents.
However these virtual twins, based on classical methods which make use of a rich representations of the system (ex. finite element method), rarely allows real-time feedback, even when considering high performance computing, operating on powerful platforms. In these circumstances, the real-time performance required in some applications are compromised. Indeed the virtual twins are static, that is, they
are used in the design of complex systems and their components, but they are not expected to accommodate or assimilate data so as to define dynamic data-driven application systems. Moreover significant deviations between the observed response and the one predicted by the model are usually noticed due to inaccuracy in the employed models, in the determination of the model parameters or in their time evolution.
In this thesis we propose different methods to solve these handicaps in order to perform real-time monitoring and control. In the first part Model Order Reduction (MOR) techniques are used to accommodate real-time constraints; they compute a good approximation of the solution by simplifying the solution procedure instead of the model. The accuracy of the predicted solution is not compromised and efficient simulations can be performed (digital twins). In the second part Data-Driven modelling are employed to fill the gap between the parametric solution computed by using non-intrusive MOR techniques and the measured fields, in order to make dynamic data-driven application systems, DDDAS, possible (Hybrid Twins). La simulación numérica, el uso de ordenadores para ejecutar un programa que implementa un modelo matemático de un sistema físico, es una parte importante del mundo tecnológico actual. En muchos campos de la ciencia y la ingeniería es necesario estudiar el comportamiento de sistemas cuyos modelos matemáticos son demasiado complejos para proporcionar soluciones analíticas, haciendo posible la evaluación virtual de las respuestas de los sistemas (gemelos virtuales). Esto reduce drásticamente el número de pruebas experimentales para los diseños precisos del sistema real que el modelo numérico representa. Sin embargo, estos gemelos virtuales, basados en métodos clásicos que hacen uso de una rica representación del sistema (por ejemplo, el método de elementos finitos), rara vez permiten la retroalimentación en tiempo real, incluso cuando se considera la computación en plataformas de alto rendimiento. En estas circunstancias, el rendimiento en tiempo real requerido en algunas aplicaciones se ve comprometido. En efecto, los gemelos virtuales son estáticos, es decir, se utilizan en el diseño de sistemas complejos y sus componentes, pero no se espera que acomoden o asimilen los datos para definir sistemas de aplicación dinámicos basados en datos. Además, se suelen apreciar desviaciones significativas entre la respuesta observada y la predicha por el modelo, debido a inexactitudes en los modelos empleados, en la determinación de los parámetros del modelo o en su evolución temporal. En esta tesis se proponen diferentes métodos para resolver estas limitaciones con el fin de realizar un seguimiento y un control en tiempo real. En la primera parte se utilizan técnicas de Reducción de Modelos para satisfacer las restricciones en tiempo real; estas técnicas calculan una buena aproximación de la solución simplificando el procedimiento de resolución en lugar del modelo. La precisión de la solución no se ve comprometida y se pueden realizar simulaciones efficientes (gemelos digitales). En la segunda parte se emplea la modelización basada en datos para llenar el vacío entre la solución paramétrica, calculada utilizando técnicas de reducción de modelos no intrusivas, y los campos medidos, con el fin de hacer posibles los sistemas de aplicación dinámicos basados en datos (gemelos híbridos). La simulation numérique, c'est-à-dire l'utilisation des ordinateurs pour exécuter un programme qui met en oeuvre un modèle mathématique d'un système physique, est une partie importante du monde technologique actuel. Elle est nécessaire dans de nombreux domaines scientifiques et techniques pour étudier le comportement de systèmes dont les modèles mathématiques sont trop complexes pour fournir des solutions analytiques et elle rend possible l'évaluation virtuelle des réponses des systèmes (jumeaux virtuels). Cela réduit considérablement le nombre de tests expérimentaux nécessaires à la conception précise du système réel que le modèle numérique représente.
Cependant, ces jumeaux virtuels, basés sur des méthodes classiques qui utilisent une représentation fine du système (ex. méthode des éléments finis), permettent rarement une rétroaction en temps réel, même dans un contexte de calcul haute performance, fonctionnant sur des plates-formes puissantes. Dans ces circonstances, les performances en temps réel requises dans certaines applications sont compromises.
En effet, les jumeaux virtuels sont statiques, c'est-à-dire qu'ils sont utilisés dans la conception de systèmes complexes et de leurs composants, mais on ne s'attend pas à ce qu'ils prennent en compte ou assimilent des données afin de définir des systèmes d'application dynamiques pilotés par les données. De plus, des écarts significatifs entre la réponse observée et celle prévue par le modèle sont généralement constatés en raison de l'imprécision des modèles employés, de la détermination des paramètres du modèle ou de leur évolution dans le temps.
Dans cette thèse, nous proposons di érentes méthodes pour résoudre ces handicaps afin d'effectuer une surveillance et un contrôle en temps réel. Dans la première partie, les techniques de Réduction de Modèles sont utilisées pour tenir compte des contraintes en temps réel ; elles calculent une bonne approximation de la solution en simplifiant la procédure de résolution plutôt que le modèle. La précision de la solution n'est pas compromise et des simulations e caces peuvent être réalisées (jumeaux numériquex). Dans la deuxième partie, la modélisation pilotée par les données est utilisée pour combler l'écart entre la solution paramétrique calculée, en utilisant
des techniques de réduction de modèles non intrusives, et les champs mesurés, afin de rendre possibles des systèmes d'application dynamiques basés sur les données (jumeaux hybrides).
Description
Cotutela: Universitat Politècnica de Catalunya i École Centrale de Nantes.
CitationQuaranta, G. Efficient simulation tools for real-time monitoring and control using model order reduction and data-driven techniques. Tesi doctoral, UPC, Departament d'Enginyeria Civil i Ambiental, 2019. DOI 10.5821/dissertation-2117-168567 . Available at: <http://hdl.handle.net/2117/168567>
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
TGQ1de1.pdf | 25,51Mb | View/Open |