Show simple item record

dc.contributor.authorPradhan, Santanu
dc.contributor.authorDiStasio, Francesco
dc.contributor.authorBi, Yu
dc.contributor.authorGupta, Shuchi
dc.contributor.authorChristodoulou, Sotirios
dc.contributor.authorStavrinadis, Alexandros
dc.contributor.authorKonstantatos, Gerasimos
dc.date.accessioned2019-09-20T15:45:11Z
dc.date.available2019-09-20T15:45:11Z
dc.date.issued2018-12-03
dc.identifier.citationPradhan, S. [et al.]. High Efficiency Colloidal Quantum Dot Infrared Light Emitting Diodes via Engineering at the Supra-Nanocrystalline Level. "Nature Nanotechnology", 3 Desembre 2018, vol. 14, p. 72-79.
dc.identifier.urihttp://hdl.handle.net/2117/168533
dc.description.abstractColloidal quantum dot (CQD) light-emitting diodes (LEDs) deliver a compelling performance in the visible, yet infrared CQD LEDs underperform their visible-emitting counterparts, largely due to their low photoluminescence quantum efficiency. Here we employ a ternary blend of CQD thin film that comprises a binary host matrix that serves to electronically passivate as well as to cater for an efficient and balanced carrier supply to the emitting quantum dot species. In doing so, we report infrared PbS CQD LEDs with an external quantum efficiency of ~7.9% and a power conversion efficiency of ~9.3%, thanks to their very low density of trap states, on the order of 1014 cm−3, and very high photoluminescence quantum efficiency in electrically conductive quantum dot solids of more than 60%. When these blend devices operate as solar cells they deliver an open circuit voltage that approaches their radiative limit thanks to the synergistic effect of the reduced trap-state density and the density of state modification in the nanocomposite.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherNature
dc.rightsCC0 1.0 Universal
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshInfrared sources
dc.subject.otherquantum dots
dc.titleHigh Efficiency Colloidal Quantum Dot Infrared Light Emitting Diodes via Engineering at the Supra-Nanocrystalline Level
dc.typeArticle
dc.subject.lemacFonts de raigs infraroigs
dc.identifier.doi10.1038/s41565-018-0312-y
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www-nature-com.recursos.biblioteca.upc.edu/articles/s41565-018-0312-y
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/725165/EU/Hierarchically Engineered Inorganic Nanomaterials from the atomic to supra-nanocrystalline level as a novel platform for SOLution Processed SOLar cells/HEINSOL
dc.relation.projectidMSCA-IF-2016-750600
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/703018/EU/Novel processing of colloidal nanocrystals for optoelectronic applications/NANOPTO
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/725165/EU/Hierarchically Engineered Inorganic Nanomaterials from the atomic to supra-nanocrystalline level as a novel platform for SOLution Processed SOLar cells/HEINSOL
local.citation.publicationNameNature Nanotechnology
local.citation.volume14
local.citation.startingPage72
local.citation.endingPage79


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record