Show simple item record

dc.contributor.authorIesan, Dorin
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
dc.identifier.citationIesan, D.; Quintanilla, R. Non-linear deformations of porous elastic solids. "International journal of non-linear mechanics", 01 Març 2013, vol. 49, p. 57-65.
dc.description.abstractThis paper is concerned with the non-linear theory of porouselastic bodies. First, we present the basic equations in general curvilinear coordinates. The constitutive equations for porouselastic bodies with incompressible matrix material are derived. Then, the equilibrium theory is investigated. An existence result within the one-dimensional theory is presented. The theory is applied in order to study the torsion of an isotropic circular cylinder and the flexure of a cuboid made of an anisotropic material. It is shown that the equations of equilibrium reduce to a single ordinary differential equation governing an unknown function which characterizes the aforementioned deformations.
dc.format.extent9 p.
dc.subjectÀrees temàtiques de la UPC::Física::Termodinàmica
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.titleNon-linear deformations of porous elastic solids
dc.subject.lemacEquacions constitutives
dc.subject.lemacElastòmers -- Proves
dc.subject.lemacTeories no-lineals
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.subject.amsClassificació AMS::76 Fluid mechanics::76A Foundations, constitutive equations, rheolog
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
upcommons.citation.authorIesan, D.; Quintanilla, R.
upcommons.citation.publicationNameInternational journal of non-linear mechanics

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder